BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24060217)

  • 21. Development of sensory tools for green rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren) and changes in quality attributes during shelf-life storage.
    de Beer D; Human C; du Preez BV; Moelich EI; van der Rijst M; Joubert E
    J Sci Food Agric; 2024 May; ():. PubMed ID: 38779961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of an environmentally relevant mixture of organochlorine pesticide compounds on adipogenesis and adipocyte function in an immortalized human adipocyte model.
    Howell GE; Young D
    Toxicol In Vitro; 2024 Jun; 98():105831. PubMed ID: 38648980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the distribution of Aspalathus linearis (Rooibos tea): implications of climate change for livelihoods dependent on both cultivation and harvesting from the wild.
    Lötter D; Maitre D
    Ecol Evol; 2014 Apr; 4(8):1209-21. PubMed ID: 24834320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translation of preclinical ethnomedicine data in LMICs: the example of rooibos.
    Pretorius L; Smith C
    Front Pharmacol; 2023; 14():1328828. PubMed ID: 38174224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats.
    Dludla PV; Muller CJ; Louw J; Joubert E; Salie R; Opoku AR; Johnson R
    Phytomedicine; 2014 Apr; 21(5):595-601. PubMed ID: 24268738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo.
    Ku SK; Kwak S; Kim Y; Bae JS
    Inflammation; 2015 Feb; 38(1):445-55. PubMed ID: 25338943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate.
    Mazibuko SE; Joubert E; Johnson R; Louw J; Opoku AR; Muller CJ
    Mol Nutr Food Res; 2015 Nov; 59(11):2199-208. PubMed ID: 26310822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome.
    Muller CJF; Malherbe CJ; Chellan N; Yagasaki K; Miura Y; Joubert E
    Crit Rev Food Sci Nutr; 2018 Jan; 58(2):227-246. PubMed ID: 27305453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo.
    Lee W; Bae JS
    Inflammation; 2015 Aug; 38(4):1502-16. PubMed ID: 25655391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Meta-analysis of the association between whole grain intake and coronary heart disease risk.
    Tang G; Wang D; Long J; Yang F; Si L
    Am J Cardiol; 2015 Mar; 115(5):625-9. PubMed ID: 25727082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies.
    Aune D; Norat T; Romundstad P; Vatten LJ
    Eur J Epidemiol; 2013 Nov; 28(11):845-58. PubMed ID: 24158434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aspalathin from Rooibos (Aspalathus linearis): A Bioactive C-glucosyl Dihydrochalcone with Potential to Target the Metabolic Syndrome.
    Johnson R; Beer D; Dludla PV; Ferreira D; Muller CJF; Joubert E
    Planta Med; 2018 Jul; 84(9-10):568-583. PubMed ID: 29388183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations.
    Breiter T; Laue C; Kressel G; Gröll S; Engelhardt UH; Hahn A
    Food Chem; 2011 Sep; 128(2):338-47. PubMed ID: 25212140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amelioration of lipopolysaccharide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress.
    Ajuwon OR; Oguntibeju OO; Marnewick JL
    BMC Complement Altern Med; 2014 Oct; 14():392. PubMed ID: 25312795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of black tea on body composition and metabolic outcomes related to cardiovascular disease risk: a randomized controlled trial.
    Bøhn SK; Croft KD; Burrows S; Puddey IB; Mulder TP; Fuchs D; Woodman RJ; Hodgson JM
    Food Funct; 2014 Jul; 5(7):1613-20. PubMed ID: 24889137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspalathus linearis (Rooibos) - a functional food targeting cardiovascular disease.
    Smith C; Swart A
    Food Funct; 2018 Oct; 9(10):5041-5058. PubMed ID: 30183052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice.
    Deng YT; Lin-Shiau SY; Shyur LF; Lin JK
    Food Funct; 2015 May; 6(5):1539-46. PubMed ID: 25820466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-A(y) mice.
    Kamakura R; Son MJ; de Beer D; Joubert E; Miura Y; Yagasaki K
    Cytotechnology; 2015 Aug; 67(4):699-710. PubMed ID: 25410530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of consumption of rooibos (Aspalathus linearis) and a rooibos-derived commercial supplement on hepatic tissue injury by tert-butyl hydroperoxide in Wistar rats.
    Canda BD; Oguntibeju OO; Marnewick JL
    Oxid Med Cell Longev; 2014; 2014():716832. PubMed ID: 24738022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weight reduction effect of Puerh tea in male patients with metabolic syndrome.
    Yang TY; Chou JI; Ueng KC; Chou MY; Yang JJ; Lin-Shiau SY; Hu ME; Lin JK
    Phytother Res; 2014 Jul; 28(7):1096-101. PubMed ID: 24399768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.