These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 24060316)

  • 21. Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex.
    Vesia M; Monteon JA; Sergio LE; Crawford JD
    J Neurophysiol; 2006 Dec; 96(6):3016-27. PubMed ID: 17005619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial magnetic stimulation of the posterior parietal cortex degrades accuracy of memory-guided saccades in humans.
    Oyachi H; Ohtsuka K
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1441-9. PubMed ID: 7775122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia.
    Trillenberg P; Sprenger A; Petersen D; Kömpf D; Heide W; Helmchen C
    Neuroimage; 2007; 36 Suppl 2():T69-76. PubMed ID: 17499172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of ipsilateral parieto-occipital cortex in the planning of reaching movements: evidence by TMS.
    Busan P; Jarmolowska J; Semenic M; Monti F; Pelamatti G; Pizzolato G; Battaglini PP
    Neurosci Lett; 2009 Aug; 460(2):112-6. PubMed ID: 19450660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context.
    Bernier PM; Grafton ST
    Neuron; 2010 Nov; 68(4):776-88. PubMed ID: 21092865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the posterior parietal cortex in updating reaching movements to a visual target.
    Desmurget M; Epstein CM; Turner RS; Prablanc C; Alexander GE; Grafton ST
    Nat Neurosci; 1999 Jun; 2(6):563-7. PubMed ID: 10448222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the posterior parietal cortex in the initiation of saccades and vergence: right/left functional asymmetry.
    Kapoula Z; Yang Q; Coubard O; Daunys G; Orssaud C
    Ann N Y Acad Sci; 2005 Apr; 1039():184-97. PubMed ID: 15826973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of repetitive transcranial magnetic stimulation on the somatosensory cortex during prism adaptation.
    Yoon HC; Lee KH; Huh DC; Lee JH; Lee DH
    Percept Mot Skills; 2014 Apr; 118(2):491-506. PubMed ID: 24897882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multisensory parietal cortex contributes to visual enhancement of touch in humans: A single-pulse TMS study.
    Konen CS; Haggard P
    Cereb Cortex; 2014 Feb; 24(2):501-7. PubMed ID: 23118199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation.
    Rice NJ; Tunik E; Grafton ST
    J Neurosci; 2006 Aug; 26(31):8176-82. PubMed ID: 16885231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp.
    Tunik E; Frey SH; Grafton ST
    Nat Neurosci; 2005 Apr; 8(4):505-11. PubMed ID: 15778711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TMS of the anterior intraparietal area selectively modulates orientation change detection during action preparation.
    Gutteling TP; Park SY; Kenemans JL; Neggers SF
    J Neurophysiol; 2013 Jul; 110(1):33-41. PubMed ID: 23596329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. State-Dependent TMS Reveals Representation of Affective Body Movements in the Anterior Intraparietal Cortex.
    Mazzoni N; Jacobs C; Venuti P; Silvanto J; Cattaneo L
    J Neurosci; 2017 Jul; 37(30):7231-7239. PubMed ID: 28642285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experiencing the Cross-Sensory Error Signal During Movement Leads to Proprioceptive Recalibration.
    Maksimovic S; Neville KM; Cressman EK
    J Mot Behav; 2020; 52(1):122-129. PubMed ID: 30761949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intentional signals during saccadic and reaching delays in the human posterior parietal cortex.
    Galati G; Committeri G; Pitzalis S; Pelle G; Patria F; Fattori P; Galletti C
    Eur J Neurosci; 2011 Dec; 34(11):1871-85. PubMed ID: 22017280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input.
    Cressman EK; Henriques DY
    J Neurophysiol; 2010 Apr; 103(4):1888-95. PubMed ID: 20130036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.