BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24060349)

  • 1. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.
    Anusavice KJ; Jadaan OM; Esquivel-Upshaw JF
    Dent Mater; 2013 Nov; 29(11):1132-8. PubMed ID: 24060349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture load of ceramic restorations after fatigue loading.
    Baladhandayutham B; Lawson NC; Burgess JO
    J Prosthet Dent; 2015 Aug; 114(2):266-71. PubMed ID: 25985741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influence of veneer application on failure behavior and reliability of lithium disilicate glass-ceramic molar crowns].
    Wei YR; Pan Y; Cao SS; Zhang XP; Zhao K
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 Feb; 48(2):91-5. PubMed ID: 23714061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.
    Lin WS; Ercoli C; Feng C; Morton D
    J Prosthodont; 2012 Jul; 21(5):353-62. PubMed ID: 22462639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns.
    Zhao K; Wei YR; Pan Y; Zhang XP; Swain MV; Guess PC
    Dent Mater; 2014 Feb; 30(2):164-71. PubMed ID: 24331550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Core/Veneer Thickness Ratio and Cyclic Loading on Fracture Resistance of Lithium Disilicate Crown.
    Nawafleh N; Hatamleh MM; Öchsner A; Mack F
    J Prosthodont; 2018 Jan; 27(1):75-82. PubMed ID: 26965298
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns.
    Altamimi AM; Tripodakis AP; Eliades G; Hirayama H
    Int J Esthet Dent; 2014; 9(1):98-110. PubMed ID: 24757702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution.
    Dartora G; Rocha Pereira GK; Varella de Carvalho R; Zucuni CP; Valandro LF; Cesar PF; Caldas RA; Bacchi A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103401. PubMed ID: 31445400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations.
    Hamza TA; Sherif RM
    J Prosthodont; 2019 Jan; 28(1):e259-e264. PubMed ID: 29044828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of veneer application on fracture behavior of lithium-disilicate-based ceramic crowns.
    Zhao K; Pan Y; Guess PC; Zhang XP; Swain MV
    Dent Mater; 2012 Jun; 28(6):653-60. PubMed ID: 22456006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of core ceramic grinding on fracture behaviour of bilayered lithium disilicate glass-ceramic under two loading schemes.
    Wang XD; Jian YT; Guess PC; Swain MV; Zhang XP; Zhao K
    J Dent; 2014 Nov; 42(11):1436-45. PubMed ID: 24704082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proof testing to improve the reliability and lifetime of ceramic dental prostheses.
    Jadaan O; Esquivel-Upshaw J; Nemeth NN; Baker E
    Dent Mater; 2023 Feb; 39(2):227-234. PubMed ID: 36707313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.
    Alhasanyah A; Vaidyanathan TK; Flinton RJ
    J Prosthodont; 2013 Jul; 22(5):383-90. PubMed ID: 23387466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on the mechanical differences of machinable lithium disilicate all-ceramic crowns].
    Lin X; Xu Y; Yang Q; Zhang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Feb; 34(1):48-52. PubMed ID: 29717586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Randomized, controlled clinical trial of bilayer ceramic and metal-ceramic crown performance.
    Esquivel-Upshaw J; Rose W; Oliveira E; Yang M; Clark AE; Anusavice K
    J Prosthodont; 2013 Apr; 22(3):166-73. PubMed ID: 22978697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis to compare stress distribution of gold alloy, lithium-disilicate reinforced glass ceramic and zirconia based fixed partial denture.
    Zheng Z; Lin J; Shinya A; Matinlinna JP; Botelho MG; Shinya A
    J Investig Clin Dent; 2012 Nov; 3(4):291-7. PubMed ID: 22977016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fracture behavior of ceramic and metal-ceramic restorations.
    Smith TB; Kelly JR; Tesk JA
    J Prosthodont; 1994 Sep; 3(3):138-44. PubMed ID: 7874255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.
    Kanat B; Cömlekoğlu EM; Dündar-Çömlekoğlu M; Hakan Sen B; Ozcan M; Ali Güngör M
    J Prosthodont; 2014 Aug; 23(6):445-55. PubMed ID: 24417370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics.
    Sundh A; Sjögren G
    J Oral Rehabil; 2004 Jul; 31(7):682-8. PubMed ID: 15210030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics.
    Nasrin S; Katsube N; Seghi RR; Rokhlin SI
    J Dent Res; 2017 May; 96(5):509-515. PubMed ID: 28107637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.