These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24060453)

  • 1. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization.
    Dong L; Miettinen K; Goedbloed M; Verstappen FW; Voster A; Jongsma MA; Memelink J; van der Krol S; Bouwmeester HJ
    Metab Eng; 2013 Nov; 20():198-211. PubMed ID: 24060453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoterpene biosynthesis potential of plant subcellular compartments.
    Dong L; Jongedijk E; Bouwmeester H; Van Der Krol A
    New Phytol; 2016 Jan; 209(2):679-90. PubMed ID: 26356766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.
    Ritala A; Dong L; Imseng N; Seppänen-Laakso T; Vasilev N; van der Krol S; Rischer H; Maaheimo H; Virkki A; Brändli J; Schillberg S; Eibl R; Bouwmeester H; Oksman-Caldentey KM
    J Biotechnol; 2014 Apr; 176():20-8. PubMed ID: 24530945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
    Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N
    Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae.
    Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ
    Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns.
    Yang T; Stoopen G; Yalpani N; Vervoort J; de Vos R; Voster A; Verstappen FW; Bouwmeester HJ; Jongsma MA
    Metab Eng; 2011 Jul; 13(4):414-25. PubMed ID: 21296182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of geraniol synthase from the peltate glands of sweet basil.
    Iijima Y; Gang DR; Fridman E; Lewinsohn E; Pichersky E
    Plant Physiol; 2004 Jan; 134(1):370-9. PubMed ID: 14657409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Characterization of a
    Zhao C; Yu Z; Silva JATD; He C; Wang H; Si C; Zhang M; Zeng D; Duan J
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli.
    Chen F; Li W; Jiang L; Pu X; Yang Y; Zhang G; Luo Y
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1281-92. PubMed ID: 27349769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cytosolic bifunctional geranyl/farnesyl diphosphate synthase provides MVA-derived GPP for geraniol biosynthesis in rose flowers.
    Conart C; Bomzan DP; Huang XQ; Bassard JE; Paramita SN; Saint-Marcoux D; Rius-Bony A; Hivert G; Anchisi A; Schaller H; Hamama L; Magnard JL; Lipko A; Swiezewska E; Jame P; Riveill G; Hibrand-Saint Oyant L; Rohmer M; Lewinsohn E; Dudareva N; Baudino S; Caissard JC; Boachon B
    Proc Natl Acad Sci U S A; 2023 May; 120(19):e2221440120. PubMed ID: 37126706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.
    Hurd MC; Kwon M; Ro DK
    Biochem Biophys Res Commun; 2017 Aug; 490(3):963-968. PubMed ID: 28655616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production.
    Masakapalli SK; Ritala A; Dong L; van der Krol AR; Oksman-Caldentey KM; Ratcliffe RG; Sweetlove LJ
    Phytochemistry; 2014 Mar; 99():73-85. PubMed ID: 24472392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems.
    Fischer MJ; Meyer S; Claudel P; Perrin M; Ginglinger JF; Gertz C; Masson JE; Werck-Reinhardt D; Hugueney P; Karst F
    J Biotechnol; 2013 Jan; 163(1):24-9. PubMed ID: 23108028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).
    Kwon M; Cochrane SA; Vederas JC; Ro DK
    FEBS Lett; 2014 Dec; 588(24):4597-603. PubMed ID: 25447532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic alteration of
    Saiman MZ; Miettinen K; Mustafa NR; Choi YH; Verpoorte R; Schulte AE
    Plant Cell Tissue Organ Cult; 2018; 134(1):41-53. PubMed ID: 31007320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability.
    Bernard A; Cha S; Shin H; Lee D; Hahn JS
    Metab Eng; 2024 May; 83():183-192. PubMed ID: 38631459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene.
    Mishra S; Pandey P; Dubey AP; Zehra A; Chanotiya CS; Tripathi AK; Mishra MN
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591387
    [No Abstract]   [Full Text] [Related]  

  • 19. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.
    Sato-Masumoto N; Ito M
    Phytochemistry; 2014 Jun; 102():46-54. PubMed ID: 24725978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.