These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
636 related articles for article (PubMed ID: 24060469)
1. Predicting fluid responsiveness during infrarenal aortic cross-clamping in pigs. Biais M; Calderon J; Pernot M; Barandon L; Couffinhal T; Ouattara A; Sztark F J Cardiothorac Vasc Anesth; 2013 Dec; 27(6):1101-7. PubMed ID: 24060469 [TBL] [Abstract][Full Text] [Related]
2. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Huang CC; Fu JY; Hu HC; Kao KC; Chen NH; Hsieh MJ; Tsai YH Crit Care Med; 2008 Oct; 36(10):2810-6. PubMed ID: 18766099 [TBL] [Abstract][Full Text] [Related]
3. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Renner J; Gruenewald M; Quaden R; Hanss R; Meybohm P; Steinfath M; Scholz J; Bein B Crit Care Med; 2009 Feb; 37(2):650-8. PubMed ID: 19114894 [TBL] [Abstract][Full Text] [Related]
4. The ability of pulse pressure variations obtained with CNAP™ device to predict fluid responsiveness in the operating room. Biais M; Stecken L; Ottolenghi L; Roullet S; Quinart A; Masson F; Sztark F Anesth Analg; 2011 Sep; 113(3):523-8. PubMed ID: 21642606 [TBL] [Abstract][Full Text] [Related]
6. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. de Waal EE; Rex S; Kruitwagen CL; Kalkman CJ; Buhre WF Crit Care Med; 2009 Feb; 37(2):510-5. PubMed ID: 19114886 [TBL] [Abstract][Full Text] [Related]
7. Predicting fluid responsiveness with stroke volume variation despite multiple extrasystoles. Cannesson M; Tran NP; Cho M; Hatib F; Michard F Crit Care Med; 2012 Jan; 40(1):193-8. PubMed ID: 21926593 [TBL] [Abstract][Full Text] [Related]
8. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Muller L; Toumi M; Bousquet PJ; Riu-Poulenc B; Louart G; Candela D; Zoric L; Suehs C; de La Coussaye JE; Molinari N; Lefrant JY; Anesthesiology; 2011 Sep; 115(3):541-7. PubMed ID: 21792056 [TBL] [Abstract][Full Text] [Related]
9. Arm occlusion pressure is a useful predictor of an increase in cardiac output after fluid loading following cardiac surgery. Geerts BF; Maas J; de Wilde RB; Aarts LP; Jansen JR Eur J Anaesthesiol; 2011 Nov; 28(11):802-6. PubMed ID: 21799416 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of stroke volume variations obtained with the pressure recording analytic method. Biais M; Cottenceau V; Stecken L; Jean M; Ottolenghi L; Roullet S; Quinart A; Sztark F Crit Care Med; 2012 Apr; 40(4):1186-91. PubMed ID: 22425817 [TBL] [Abstract][Full Text] [Related]
11. [Stroke volume and pulse pressure variation are good predictors of fluid responsiveness in sepsis patients]. Drvar Z; Pavlek M; Drvar V; Tomasević B; Baronica R; Perić M Acta Med Croatica; 2013 Dec; 67(5):407-14. PubMed ID: 24979881 [TBL] [Abstract][Full Text] [Related]
12. Pulse-pressure variation predicts fluid responsiveness during heart displacement for off-pump coronary artery bypass surgery. Lee JH; Jeon Y; Bahk JH; Gil NS; Kim KB; Hong DM; Kim HJ J Cardiothorac Vasc Anesth; 2011 Dec; 25(6):1056-62. PubMed ID: 21924634 [TBL] [Abstract][Full Text] [Related]
13. Effect of elevated PEEP on dynamic variables of fluid responsiveness in a pediatric animal model. Renner J; Gruenewald M; Meybohm P; Hedderich J; Steinfath M; Scholz J; Bein B Paediatr Anaesth; 2008 Dec; 18(12):1170-7. PubMed ID: 19076570 [TBL] [Abstract][Full Text] [Related]
14. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Biais M; Ehrmann S; Mari A; Conte B; Mahjoub Y; Desebbe O; Pottecher J; Lakhal K; Benzekri-Lefevre D; Molinari N; Boulain T; Lefrant JY; Muller L; Crit Care; 2014 Nov; 18(6):587. PubMed ID: 25658489 [TBL] [Abstract][Full Text] [Related]
16. The ability of pleth variability index to predict the hemodynamic effects of positive end-expiratory pressure in mechanically ventilated patients under general anesthesia. Desebbe O; Boucau C; Farhat F; Bastien O; Lehot JJ; Cannesson M Anesth Analg; 2010 Mar; 110(3):792-8. PubMed ID: 20185658 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic pressure waveform analysis in predicting fluid responsiveness. Roy S; Couture P; Qizilbash B; Toupin F; Levesque S; Carrier M; Lambert J; Denault AY J Cardiothorac Vasc Anesth; 2013 Aug; 27(4):676-80. PubMed ID: 23849524 [TBL] [Abstract][Full Text] [Related]
18. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Monnet X; Osman D; Ridel C; Lamia B; Richard C; Teboul JL Crit Care Med; 2009 Mar; 37(3):951-6. PubMed ID: 19237902 [TBL] [Abstract][Full Text] [Related]
19. Detection of right ventricular insufficiency and guidance of volume therapy are facilitated by simultaneous monitoring of static and functional preload parameters. Richter HP; Petersen C; Goetz AE; Reuter DA; Kubitz JC J Cardiothorac Vasc Anesth; 2011 Dec; 25(6):1051-5. PubMed ID: 21924635 [TBL] [Abstract][Full Text] [Related]
20. Pulse pressure variation as a guide for volume expansion in dogs undergoing orthopedic surgery. Fantoni DT; Ida KK; Gimenes AM; Mantovani MM; Castro JR; Patrício GCF; Ambrósio AM; Otsuki DA Vet Anaesth Analg; 2017 Jul; 44(4):710-718. PubMed ID: 28734854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]