These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24060579)

  • 1. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action.
    Shao J; Liu D; Gong D; Zeng Q; Yan Z; Gu JD
    Aquat Toxicol; 2013 Oct; 142-143():257-63. PubMed ID: 24060579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843.
    Shao J; He Y; Li F; Zhang H; Chen A; Luo S; Gu JD
    Ecotoxicology; 2016 Jan; 25(1):225-33. PubMed ID: 26547872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial bloom mitigation by sanguinarine and its effects on aquatic microbial community structure.
    Lin Y; Chen A; Luo S; Kuang X; Li R; Lepo JE; Gu JD; Zeng Q; Shao J
    Environ Pollut; 2019 Oct; 253():497-506. PubMed ID: 31330342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria).
    Shao J; Xu Y; Wang Z; Jiang Y; Yu G; Peng X; Li R
    Aquat Toxicol; 2011 Jul; 104(1-2):48-55. PubMed ID: 21543049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Wang F; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Mar; 285():517-24. PubMed ID: 25559779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects and possible mechanisms of sanguinarine on the competition between Raphidiopsis raciborskii (Cyanophyta) and Scenedesmus obliquus (Chlorophyta): A comparative toxicological study.
    Qing C; Zhang H; Chen A; Lin Y; Shao J
    Ecotoxicol Environ Saf; 2020 Dec; 206():111192. PubMed ID: 32858326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Li FM
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):527-34. PubMed ID: 18054385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance of cyanobacteria Microcystis aeruginosa to erythromycin with multiple exposure.
    Wu Y; Wan L; Zhang W; Ding H; Yang W
    Chemosphere; 2020 Jun; 249():126147. PubMed ID: 32062559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress.
    Lu Y; Wang J; Yu Y; Shi L; Kong F
    Chemosphere; 2014 Dec; 117():164-9. PubMed ID: 25016428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid human melanoma cell death induced by sanguinarine through oxidative stress.
    Burgeiro A; Bento AC; Gajate C; Oliveira PJ; Mollinedo F
    Eur J Pharmacol; 2013 Apr; 705(1-3):109-18. PubMed ID: 23499690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract.
    Park MH; Han MS; Ahn CY; Kim HS; Yoon BD; Oh HM
    Lett Appl Microbiol; 2006 Sep; 43(3):307-12. PubMed ID: 16910937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium.
    Zhou W; Juneau P; Qiu B
    Chemosphere; 2006 Dec; 65(10):1738-46. PubMed ID: 16777178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome.
    Zhang S; Benoit G
    Aquat Toxicol; 2019 Oct; 215():105271. PubMed ID: 31470337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.
    Li J; Liu Y; Zhang P; Zeng G; Cai X; Liu S; Yin Y; Hu X; Hu X; Tan X
    J Environ Sci (China); 2016 May; 43():40-47. PubMed ID: 27155407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.
    Chen L; Gin KY; He Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3586-95. PubMed ID: 26490939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards clarification of the inhibitory mechanism of wheat bran leachate on Microcystis aeruginosa NIES-843 (Cyanobacteria): physiological responses.
    Shao J; Yu G; Wang Z; Wu Z; Peng X; Li R
    Ecotoxicology; 2010 Nov; 19(8):1634-41. PubMed ID: 20882340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.
    Li T; Bi Y; Liu J; Wu C
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20297-20306. PubMed ID: 27448813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction.
    Han MH; Kim GY; Yoo YH; Choi YH
    Toxicol Lett; 2013 Jul; 220(2):157-66. PubMed ID: 23660334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish.
    Jang MH; Ha K; Lucas MC; Joo GJ; Takamura N
    Aquat Toxicol; 2004 May; 68(1):51-9. PubMed ID: 15110469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.