These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24060620)

  • 1. Neural field theory of synaptic metaplasticity with applications to theta burst stimulation.
    Fung PK; Robinson PA
    J Theor Biol; 2014 Jan; 340():164-76. PubMed ID: 24060620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation.
    Fung PK; Robinson PA
    J Theor Biol; 2013 May; 324():72-83. PubMed ID: 23376643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity.
    Gentner R; Wankerl K; Reinsberger C; Zeller D; Classen J
    Cereb Cortex; 2008 Sep; 18(9):2046-53. PubMed ID: 18165282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Priming theta-burst repetitive transcranial magnetic stimulation with low- and high-frequency stimulation.
    Todd G; Flavel SC; Ridding MC
    Exp Brain Res; 2009 May; 195(2):307-15. PubMed ID: 19363604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term and long-term plasticity interaction in human primary motor cortex.
    Iezzi E; Suppa A; Conte A; Li Voti P; Bologna M; Berardelli A
    Eur J Neurosci; 2011 May; 33(10):1908-15. PubMed ID: 21488986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP.
    Abraham WC; Mason-Parker SE; Bear MF; Webb S; Tate WP
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10924-9. PubMed ID: 11517323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model.
    Wilson MT; Fung PK; Robinson PA; Shemmell J; Reynolds JN
    J Comput Neurosci; 2016 Aug; 41(1):107-25. PubMed ID: 27259518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human.
    Huang YZ; Rothwell JC; Edwards MJ; Chen RS
    Cereb Cortex; 2008 Mar; 18(3):563-70. PubMed ID: 17573373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.
    Conte A; Belvisi D; Bologna M; Ottaviani D; Fabbrini G; Colosimo C; Williams DR; Berardelli A
    Cereb Cortex; 2012 Mar; 22(3):693-700. PubMed ID: 21677027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic plasticity, metaplasticity and BCM theory.
    Jedlicka P
    Bratisl Lek Listy; 2002; 103(4-5):137-43. PubMed ID: 12413200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent but action potential-independent BCM-like metaplasticity in the hippocampus.
    Hulme SR; Jones OD; Ireland DR; Abraham WC
    J Neurosci; 2012 May; 32(20):6785-94. PubMed ID: 22593048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors.
    Castellani GC; Quinlan EM; Cooper LN; Shouval HZ
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12772-7. PubMed ID: 11675507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception.
    Jones CB; Lulic T; Bailey AZ; Mackenzie TN; Mi YQ; Tommerdahl M; Nelson AJ
    J Neurophysiol; 2016 May; 115(5):2681-91. PubMed ID: 26984422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal Mechanisms of Plasticity and Metaplasticity in Autism Spectrum Disorders and Fragile X Syndrome.
    Oberman LM; Ifert-Miller F; Najib U; Bashir S; Heydrich JG; Picker J; Rotenberg A; Pascual-Leone A
    J Child Adolesc Psychopharmacol; 2016 Sep; 26(7):617-24. PubMed ID: 27218148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models.
    Thickbroom GW
    Exp Brain Res; 2007 Jul; 180(4):583-93. PubMed ID: 17562028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural field theory of synaptic plasticity.
    Robinson PA
    J Theor Biol; 2011 Sep; 285(1):156-63. PubMed ID: 21767551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modelling of plasticity induced by transcranial magnetic stimulation.
    Wilson MT; Goodwin DP; Brownjohn PW; Shemmell J; Reynolds JN
    J Comput Neurosci; 2014 Jun; 36(3):499-514. PubMed ID: 24150916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial Magnetic Stimulation-Induced Plasticity Mechanisms: TMS-Related Gene Expression and Morphology Changes in a Human Neuron-Like Cell Model.
    Thomson AC; Kenis G; Tielens S; de Graaf TA; Schuhmann T; Rutten BPF; Sack AT
    Front Mol Neurosci; 2020; 13():528396. PubMed ID: 33192288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural plasticity can produce metaplasticity.
    Kalantzis G; Shouval HZ
    PLoS One; 2009 Nov; 4(11):e8062. PubMed ID: 19956610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation.
    Wilson MT; Fulcher BD; Fung PK; Robinson PA; Fornito A; Rogasch NC
    Clin Neurophysiol; 2018 Jun; 129(6):1230-1241. PubMed ID: 29674089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.