These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24060622)

  • 1. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering.
    Lee JY; Choi B; Wu B; Lee M
    Biofabrication; 2013 Dec; 5(4):045003. PubMed ID: 24060622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.
    Tuzlakoglu K; Reis RL
    J Mater Sci Mater Med; 2007 Jul; 18(7):1279-86. PubMed ID: 17431748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold.
    P B S; S G; J P; Muthusamy S; R N; Krishnakumar GS; R S
    Int J Biol Macromol; 2022 Jan; 195():179-189. PubMed ID: 34863969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation.
    Bandyopadhyay A; Mandal BB
    Biofabrication; 2019 Oct; 12(1):015003. PubMed ID: 31480031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head-an in vitro study.
    Wang JQ; Jiang BJ; Guo WJ; Zhao YM
    J Orthop Surg Res; 2019 Apr; 14(1):102. PubMed ID: 30975173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold fabrication by indirect three-dimensional printing.
    Lee M; Dunn JC; Wu BM
    Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.
    Park JH; Jung JW; Kang HW; Cho DW
    Biofabrication; 2014 Jun; 6(2):025003. PubMed ID: 24658060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique.
    Stafin K; Śliwa P; Piątkowski M
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a biomimetic spinal cord tissue construct with heterogenous mechanical properties using intrascaffold cell assembly.
    Firouzian KF; Song Y; Lin F; Zhang T
    Biotechnol Bioeng; 2020 Oct; 117(10):3094-3107. PubMed ID: 32542651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model.
    Liu Y; Peng L; Li L; Huang C; Shi K; Meng X; Wang P; Wu M; Li L; Cao H; Wu K; Zeng Q; Pan H; Lu WW; Qin L; Ruan C; Wang X
    Biomaterials; 2021 Dec; 279():121216. PubMed ID: 34739982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds.
    Oliveira AL; Malafaya PB; Costa SA; Sousa RA; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):211-23. PubMed ID: 17323152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report.
    Park SY; Choi JW; Park JK; Song EH; Park SA; Kim YS; Shin YS; Kim CH
    Interact Cardiovasc Thorac Surg; 2016 Jun; 22(6):712-7. PubMed ID: 26969739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.