These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24060644)

  • 1. The electrophysiological locus of the redundant target effect on visual discrimination in a dual singleton search task.
    Akyürek EG; Schubö A
    Brain Res; 2013 Nov; 1537():180-90. PubMed ID: 24060644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The allocation of attention in displays with simultaneously presented singletons.
    Akyürek EG; Schubö A
    Biol Psychol; 2011 May; 87(2):218-25. PubMed ID: 21406208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundancy gains in pop-out visual search are determined by top-down task set: behavioral and electrophysiological evidence.
    Grubert A; Krummenacher J; Eimer M
    J Vis; 2011 Dec; 11(14):. PubMed ID: 22159631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural processing fate of singleton target and nontarget stimuli.
    Akyürek EG; Dinkelbach A; Schubö A
    Brain Res; 2010 Jan; 1307():115-33. PubMed ID: 19833112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological evidence of the capture of visual attention.
    Hickey C; McDonald JJ; Theeuwes J
    J Cogn Neurosci; 2006 Apr; 18(4):604-13. PubMed ID: 16768363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual basis of redundancy gains in visual pop-out search.
    Töllner T; Zehetleitner M; Krummenacher J; Müller HJ
    J Cogn Neurosci; 2011 Jan; 23(1):137-50. PubMed ID: 20044891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A search order lost effect: ignoring a singleton distractor affects visual search efficiency.
    Kumada T
    Vision Res; 2010 Jun; 50(14):1402-13. PubMed ID: 20025896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of the associated nontargets effect: processes influenced by statistical learning in a simple visual environment.
    Reynolds A; Miller J
    Q J Exp Psychol (Hove); 2007 Jun; 60(6):837-59. PubMed ID: 17514597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological correlates of detecting a visual target and detecting its absence: the role of feature dimensions.
    Akyürek EG; Dinkelbach A; Schubö A; Müller HJ
    Neuropsychologia; 2010 Sep; 48(11):3365-70. PubMed ID: 20633570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological correlates of early attentional feature selection and distractor filtering.
    Akyürek EG; Schubö A
    Biol Psychol; 2013 May; 93(2):269-78. PubMed ID: 23454277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.
    Wykowska A; Schubö A
    J Cogn Neurosci; 2011 Mar; 23(3):645-60. PubMed ID: 19929330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological evidence for independent consolidation of multiple targets.
    Kihara K; Kawahara J; Takeda Y
    Neuroreport; 2008 Oct; 19(15):1493-6. PubMed ID: 18797304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target uncertainty does not lead to greater singleton distractor interference when target shapes are not interchangeable with nontarget shapes.
    Berry JH
    Vision Res; 2013 Mar; 80():31-40. PubMed ID: 23385060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difficulty of discrimination modulates attentional capture by regulating attentional focus.
    Sawaki R; Katayama J
    J Cogn Neurosci; 2009 Feb; 21(2):359-71. PubMed ID: 18510441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task difficulty modulates electrophysiological correlates of perceptual learning.
    Wang Y; Song Y; Qu Z; Ding Y
    Int J Psychophysiol; 2010 Mar; 75(3):234-40. PubMed ID: 19969030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological evidence of semantic interference in visual search.
    Telling AL; Kumar S; Meyer AS; Humphreys GW
    J Cogn Neurosci; 2010 Oct; 22(10):2212-25. PubMed ID: 19803680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search.
    Barras C; Kerzel D
    Atten Percept Psychophys; 2017 Oct; 79(7):2037-2043. PubMed ID: 28681179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A salient and task-irrelevant collinear structure hurts visual search.
    Tseng CH; Jingling L
    PLoS One; 2015; 10(4):e0124190. PubMed ID: 25909986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.