BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 24060985)

  • 1. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells.
    Zhu C; Dong S
    Nanoscale; 2013 Nov; 5(22):10765-75. PubMed ID: 24060985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction.
    Zhu C; Dong S
    Nanoscale; 2013 Mar; 5(5):1753-67. PubMed ID: 23364753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis.
    Giovanni M; Poh HL; Ambrosi A; Zhao G; Sofer Z; Šaněk F; Khezri B; Webster RD; Pumera M
    Nanoscale; 2012 Aug; 4(16):5002-8. PubMed ID: 22763466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction.
    Zheng Y; Jiao Y; Jaroniec M; Jin Y; Qiao SZ
    Small; 2012 Dec; 8(23):3550-66. PubMed ID: 22893586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage.
    Mai Y; Zhang F; Feng X
    Nanoscale; 2014 Jan; 6(1):106-21. PubMed ID: 24284837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction.
    Yang Z; Yao Z; Li G; Fang G; Nie H; Liu Z; Zhou X; Chen X; Huang S
    ACS Nano; 2012 Jan; 6(1):205-11. PubMed ID: 22201338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
    Liang Y; Li Y; Wang H; Dai H
    J Am Chem Soc; 2013 Feb; 135(6):2013-36. PubMed ID: 23339685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable synthesis of metal-graphene complex nanostructures and their catalytic ability for solvent-free cyclohexene oxidation in air.
    Huang H; Zhang H; Ma Z; Liu Y; Ming H; Li H; Kang Z
    Nanoscale; 2012 Aug; 4(16):4964-7. PubMed ID: 22695820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors.
    Zhang R; Chen W
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):249-268. PubMed ID: 26852831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction.
    Parvez K; Yang S; Hernandez Y; Winter A; Turchanin A; Feng X; Müllen K
    ACS Nano; 2012 Nov; 6(11):9541-50. PubMed ID: 23050839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries.
    Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ
    ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems.
    Zhang J; Li CM
    Chem Soc Rev; 2012 Nov; 41(21):7016-31. PubMed ID: 22975622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.
    Yu X; Zhang W; Zhang P; Su Z
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):72-84. PubMed ID: 26856633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells.
    Zhao CE; Wang WJ; Sun D; Wang X; Zhang JR; Zhu JJ
    Chemistry; 2014 Jun; 20(23):7091-7. PubMed ID: 24753231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas.
    Luo B; Liu S; Zhi L
    Small; 2012 Mar; 8(5):630-46. PubMed ID: 22121112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of graphene electrophoretic deposition. A review.
    Chavez-Valdez A; Shaffer MS; Boccaccini AR
    J Phys Chem B; 2013 Feb; 117(6):1502-15. PubMed ID: 23088165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile approach for in situ synthesis of graphene-branched-Pt hybrid nanostructures with excellent electrochemical performance.
    Sahu SC; Samantara AK; Satpati B; Bhattacharjee S; Jena BK
    Nanoscale; 2013 Nov; 5(22):11265-74. PubMed ID: 24088741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.