These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24061237)
1. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy. Bolanča T; Marinović S; Ukić S; Jukić A; Rukavina V Acta Chim Slov; 2012 Jun; 59(2):249-57. PubMed ID: 24061237 [TBL] [Abstract][Full Text] [Related]
2. Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two-phase training algorithms. Bolanca T; Cerjan-Stefanović S; Regelja M; Regelja H; Loncarić S J Chromatogr A; 2005 Aug; 1085(1):74-85. PubMed ID: 16106851 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of feed-forward back propagation and radial basis function neural networks in simultaneous kinetic spectrophotometric determination of nitroaniline isomers. Hasani M; Emami F Talanta; 2008 Mar; 75(1):116-26. PubMed ID: 18371856 [TBL] [Abstract][Full Text] [Related]
5. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Plumb AP; Rowe RC; York P; Brown M Eur J Pharm Sci; 2005; 25(4-5):395-405. PubMed ID: 15893460 [TBL] [Abstract][Full Text] [Related]
6. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Xi J; Xue Y; Xu Y; Shen Y Food Chem; 2013 Nov; 141(1):320-6. PubMed ID: 23768364 [TBL] [Abstract][Full Text] [Related]
7. Procedure for and results of simultaneous determination of aromatic hydrocarbons and fatty acid methyl esters in diesel fuels by high performance liquid chromatography. Kamiński M; Gilgenast E; Przyjazny A; Romanik G J Chromatogr A; 2006 Jul; 1122(1-2):153-60. PubMed ID: 16704869 [TBL] [Abstract][Full Text] [Related]
8. Use of artificial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs. Pérez-Marín D; Garrido-Varo A; Guerrero JE; Gutiérrez-Estrada JC Appl Spectrosc; 2006 Sep; 60(9):1062-9. PubMed ID: 17002832 [TBL] [Abstract][Full Text] [Related]
9. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis. Nespeca MG; Hatanaka RR; Flumignan DL; de Oliveira JE J Anal Methods Chem; 2018; 2018():1795624. PubMed ID: 29629209 [TBL] [Abstract][Full Text] [Related]
10. Relating formulation variables to in vitro dissolution using an artificial neural network. Ebube NK; McCall T; Chen Y; Meyer MC Pharm Dev Technol; 1997 Aug; 2(3):225-32. PubMed ID: 9552450 [TBL] [Abstract][Full Text] [Related]
11. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644 [TBL] [Abstract][Full Text] [Related]
12. Optimization of artificial neural networks used for retention modelling in ion chromatography. Srecnik G; Debeljak Z; Cerjan-Stefanović S; Novic M; Bolancab T J Chromatogr A; 2002 Oct; 973(1-2):47-59. PubMed ID: 12437163 [TBL] [Abstract][Full Text] [Related]
13. Optimization of artificial neural network for retention modeling in high-performance liquid chromatography. Vasiljević T; Onjia A; Cokesa D; Lausević M Talanta; 2004 Oct; 64(3):785-90. PubMed ID: 18969673 [TBL] [Abstract][Full Text] [Related]
14. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database. Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533 [TBL] [Abstract][Full Text] [Related]
15. [Estimating the severity of rice brown spot disease based on principal component analysis and radial basis function neural network]. Liu ZY; Huang JF; Tao RX; Zhang HZ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2156-60. PubMed ID: 19093583 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural networks for determination of enantiomeric composition of alpha-phenylglycine using UV spectra of cyclodextrin host-guest complexes: comparison of feed-forward and radial basis function networks. Afkhami A; Abbasi-Tarighat M; Bahram M Talanta; 2008 Mar; 75(1):91-8. PubMed ID: 18371852 [TBL] [Abstract][Full Text] [Related]
17. Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Okut H; Gianola D; Rosa GJ; Weigel KA Genet Res (Camb); 2011 Jun; 93(3):189-201. PubMed ID: 21481292 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Singh A; Majumder A; Goyal A Bioresour Technol; 2008 Nov; 99(17):8201-6. PubMed ID: 18440808 [TBL] [Abstract][Full Text] [Related]
19. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water. Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193 [TBL] [Abstract][Full Text] [Related]
20. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. Prakash O; Mehrotra S; Krishna A; Mishra BN J Theor Biol; 2010 Aug; 265(4):579-85. PubMed ID: 20561985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]