These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24061297)

  • 1. Chromatographic Enantiomer Separation Using 9-Amino-9-(deoxy)-epiquinine-derived Chiral Selectors: Control of Chiral Recognition via Introduction of Additional Stereogenic Centers.
    Maier NM; Greco E; Petrovaj J; Lindner W
    Acta Chim Slov; 2012 Sep; 59(3):454-63. PubMed ID: 24061297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel urea-linked cinchona-calixarene hybrid-type receptors for efficient chromatographic enantiomer separation of carbamate-protected cyclic amino acids.
    Krawinkler KH; Maier NM; Sajovic E; Lindner W
    J Chromatogr A; 2004 Oct; 1053(1-2):119-31. PubMed ID: 15543978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective anion exchangers based on cinchona alkaloid-derived carbamates: influence of C8/C9 stereochemistry on chiral recognition.
    Maier NM; Nicoletti L; Lämmerhofer M; Lindner W
    Chirality; 1999; 11(7):522-8. PubMed ID: 10423277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical method for the quantitative assessment of non-enantioselective versus enantioselective interactions encountered in liquid chromatography on brush-type chiral stationary phase.
    Levkin P; Maier NM; Lindner W; Schurig V
    J Chromatogr A; 2012 Dec; 1269():270-8. PubMed ID: 23127812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids.
    Krawinkler KH; Maier NM; Ungaro R; Sansone F; Casnati A; Lindner W
    Chirality; 2003; 15 Suppl():S17-29. PubMed ID: 12884371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatility of cinchona-based zwitterionic chiral stationary phases: enantiomer and diastereomer separations of non-protected oligopeptides utilizing a multi-modal chiral recognition mechanism.
    Wernisch S; Lindner W
    J Chromatogr A; 2012 Dec; 1269():297-307. PubMed ID: 22835695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition of peptide enantiomers by cinchona alkaloid derived chiral selectors: mechanistic investigations by liquid chromatography, NMR spectroscopy, and molecular modeling.
    Czerwenka C; Zhang MM; Kählig H; Maier NM; Lipkowitz KB; Lindner W
    J Org Chem; 2003 Oct; 68(22):8315-27. PubMed ID: 14575453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel enantioselective strong cation exchangers based on sulfodipeptide selectors: evaluation for enantiomer separation of chiral bases by nonaqueous capillary electrochromatography.
    Hebenstreit D; Bicker W; Lämmerhofer M; Lindner W
    Electrophoresis; 2004 Jan; 25(2):277-89. PubMed ID: 14743480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiomer separation of a powerful chiral auxiliary, 2-methoxy-2-(1-naphthyl)propionic acid by liquid chromatography using chiral anion exchanger-type stationary phases in polar-organic mode; investigation of molecular recognition aspects.
    Gyimesi-Forrás K; Akasaka K; Lämmerhofer M; Maier NM; Fujita T; Watanabe M; Harada N; Lindner W
    Chirality; 2005; 17 Suppl():S134-42. PubMed ID: 15806575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies between covalently immobilized and coated chiral stationary phases based on polysaccharide derivatives for enantiomer separation of N-protected alpha-amino acids and their ester derivatives.
    Jin JY; Bae SK; Lee W
    Chirality; 2009 Nov; 21(10):871-7. PubMed ID: 19006204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of mobile phase contributions to enantioselective anion- and zwitterion-exchange modes on quinine-based zwitterionic chiral stationary phases.
    Hoffmann CV; Reischl R; Maier NM; Lämmerhofer M; Lindner W
    J Chromatogr A; 2009 Feb; 1216(7):1157-66. PubMed ID: 19144343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of chiral recognition in the enantioseparation of 2-aryloxypropionic acids on new brush-type chiral stationary phases.
    Vinkovic V; Kontrec D; Sunjic V; Navarini L; Zanetti F; Azzolina O
    Chirality; 2001; 13(9):581-7. PubMed ID: 11579453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of amino acid moiety accessibility on the chiral recognition of cyclodextrin-amino acid mixed selectors in enantioselective gas chromatography.
    Stephany O; Tisse S; Coadou G; Bouillon JP; Peulon-Agasse V; Cardinael P
    J Chromatogr A; 2012 Dec; 1270():254-61. PubMed ID: 23164165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid chromatographic resolution of N-acyl-alpha-amino acids as their anilide derivatives on a chiral stationary phase based on (S)-leucine.
    Hyun MH; Lee GS; Han SC; Cho YJ; Baik IK
    Chirality; 2002 Jun; 14(6):503-8. PubMed ID: 12112346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining the enantioselectivities of L-valine diamide and permethylated beta-cyclodextrin in one gas chromatographic chiral stationary phase.
    Levkin PA; Levkina A; Schurig V
    Anal Chem; 2006 Jul; 78(14):5143-8. PubMed ID: 16841940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel chiral stationary phases based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin combining cinchona alkaloid moiety.
    Zhu L; Zhu J; Sun X; Wu Y; Wang H; Cheng L; Shen J; Ke Y
    Chirality; 2020 Aug; 32(8):1080-1090. PubMed ID: 32383525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyte templating: enhancing the enantioselectivity of chiral selectors upon incorporation into organic polymer environments.
    Gavioli E; Maier NM; Haupt K; Mosbach K; Lindner W
    Anal Chem; 2005 Aug; 77(15):5009-18. PubMed ID: 16053316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of dendrimer-type chiral stationary phases based on the selector of (1S,2R)-(+)-2-amino-1,2-diphenylethanol derivate and their enantioseparation evaluation by HPLC.
    He BJ; Yin CQ; Li SR; Bai ZW
    Chirality; 2010 Jan; 22(1):69-76. PubMed ID: 19319988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioresolution of chiral derivatives of xanthones on (S,S)-Whelk-O1 and L-phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1.
    Fernandes C; Palmeira A; Santos A; Tiritan ME; Afonso C; Pinto MM
    Chirality; 2013 Feb; 25(2):89-100. PubMed ID: 23229954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the chiral separation of amino-acid derivatives by a teicoplanin and RN-beta-CD CSPs using waterless mobile phases: Factors that enhance resolution.
    Chen S; Ward T
    Chirality; 2004 May; 16(5):318-30. PubMed ID: 15069663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.