These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24061333)

  • 1. Electron transport through 5-substituted pyrimidines in DNA: electron affinities of uracil and cytosine derivatives differently affect the apparent efficiencies.
    Ito T; Kurihara R; Utsumi N; Hamaguchi Y; Tanabe K; Nishimoto S
    Chem Commun (Camb); 2013 Nov; 49(87):10281-3. PubMed ID: 24061333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The determination of absolute electron affinities of the purines and pyrimidines in DNA and RNA from reversible reduction potentials.
    Wiley JR; Robinson JM; Ehdaie S; Chen EC; Chen ES; Wentworth WE
    Biochem Biophys Res Commun; 1991 Oct; 180(2):841-5. PubMed ID: 1719971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC; Wiley JR; Chen ES
    Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Does Guanine-Cytosine Base Pair Affect Excess-Electron Transfer in DNA?
    Lin SH; Fujitsuka M; Majima T
    J Phys Chem B; 2015 Jun; 119(25):7994-8000. PubMed ID: 26042867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine.
    Chen ES; Chen EC; Sane N
    Biochem Biophys Res Commun; 1998 May; 246(1):228-30. PubMed ID: 9600097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of excess electron transfer in phenothiazine-tethered DNA containing single-base mismatches.
    Ito T; Kondo A; Kamashita T; Tanabe K; Yamada H; Nishimoto S
    Org Biomol Chem; 2009 May; 7(10):2077-81. PubMed ID: 19421445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess-electron injection and transfer in terthiophene-modified DNA: terthiophene as a photosensitizing electron donor for thymine, cytosine, and adenine.
    Park MJ; Fujitsuka M; Kawai K; Majima T
    Chemistry; 2012 Feb; 18(7):2056-62. PubMed ID: 22249959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Polymethylene derivatives of nucleic bases with omega-functional groups. III. N-[7-(2-oxocyclohexyl)-7-oxoheptyl]-substituted pyrimidines].
    Kritsyn AM; Komissarov VV
    Bioorg Khim; 2004; 30(5):487-92. PubMed ID: 15562969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prototropic interactions of pyrimidine nucleic acid bases with acridine: a spectroscopic investigation.
    Sarangi MK; Mitra A; Basu S
    J Phys Chem B; 2012 Aug; 116(34):10275-82. PubMed ID: 22816664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution photoelectron spectra of the pyrimidine-type nucleobases.
    Fulfer KD; Hardy D; Aguilar AA; Poliakoff ED
    J Chem Phys; 2015 Jun; 142(22):224310. PubMed ID: 26071713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion binding of substituted pyrimidine base pairs in DNA duplexes.
    Watanabe Y; Minowa T; Ono A
    Nucleic Acids Symp Ser (Oxf); 2004; (48):85-6. PubMed ID: 17150490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Polymethylene derivatives of nucleic bases with omega-functional groups. Pyrimidine derivatives].
    Makinskiĭ AA; Kritsyn AM; Ul'ianova EA; Zakharova OD; Nevinskiĭ GA
    Bioorg Khim; 2000 Oct; 26(10):735-42. PubMed ID: 11221254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific transition of cytosine to uracil via reversible DNA photoligation.
    Fujimoto K; Matsuda S; Yoshimura Y; Matsumura T; Hayashi M; Saito I
    Chem Commun (Camb); 2006 Aug; (30):3223-5. PubMed ID: 17028750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of cytosine to uracil in single-stranded DNA via their oxime sulfonates.
    Oka Y; Takei F; Nakatani K
    Chem Commun (Camb); 2010 May; 46(19):3378-80. PubMed ID: 20442906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations.
    Wu R; McMahon TB
    J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent UV resonance Raman spectra of cytosine and uracil.
    Billinghurst BE; Oladepo SA; Loppnow GR
    J Phys Chem B; 2009 May; 113(20):7392-7. PubMed ID: 19438283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions.
    Nachtigallová D; Hobza P; Ritze HH
    Phys Chem Chem Phys; 2008 Oct; 10(37):5689-97. PubMed ID: 18956103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemistry of halogen pyrimidines: iodine release studies.
    Rahn RO
    Photochem Photobiol; 1992 Jul; 56(1):9-15. PubMed ID: 1508985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly effective quenching of the ultrafast radiationless decay of photoexcited pyrimidine bases by covalent modification: photophysics of 5,6-trimethylenecytosine and 5,6-trimethyleneuracil.
    Zgierski MZ; Fujiwara T; Kofron WG; Lim EC
    Phys Chem Chem Phys; 2007 Jul; 9(25):3206-9. PubMed ID: 17579729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleobases as supramolecular motifs.
    Sivakova S; Rowan SJ
    Chem Soc Rev; 2005 Jan; 34(1):9-21. PubMed ID: 15643486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.