These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24061577)

  • 1. New non-covalent strategies for stable surface treatment of thermoplastic chips.
    Perez-Toralla K; Champ J; Mohamadi MR; Braun O; Malaquin L; Viovy JL; Descroix S
    Lab Chip; 2013 Nov; 13(22):4409-18. PubMed ID: 24061577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.
    Zilio C; Sola L; Damin F; Faggioni L; Chiari M
    Biomed Microdevices; 2014 Feb; 16(1):107-14. PubMed ID: 24037663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method.
    Li C; Yang Y; Craighead HG; Lee KH
    Electrophoresis; 2005 May; 26(9):1800-6. PubMed ID: 15800962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.
    van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E
    Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.
    Davalos RV; McGraw GJ; Wallow TI; Morales AM; Krafcik KL; Fintschenko Y; Cummings EB; Simmons BA
    Anal Bioanal Chem; 2008 Feb; 390(3):847-55. PubMed ID: 17624517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting.
    Stachowiak TB; Mair DA; Holden TG; Lee LJ; Svec F; Fréchet JM
    J Sep Sci; 2007 May; 30(7):1088-93. PubMed ID: 17566345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance of cyclic olefin copolymer-based capillary electrophoretic chips.
    Roy S; Das T; Yue CY
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5683-9. PubMed ID: 23748936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol.
    Jagannath A; Yu M; Li J; Zhang N; Gilchrist MD
    Biomater Adv; 2024 Oct; 163():213934. PubMed ID: 38954877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
    Chen CF; Liu J; Chang CC; DeVoe DL
    Lab Chip; 2009 Dec; 9(24):3511-6. PubMed ID: 20024030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brush-like copolymer as a physically adsorbed coating for protein separation by capillary electrophoresis.
    Zhou D; Tan L; Xiang L; Zeng R; Cao F; Zhu X; Wang Y
    J Sep Sci; 2011 Jul; 34(14):1738-45. PubMed ID: 21674795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrophoresis using copolymers of different composition as physical coatings: a comparative study.
    Erny GL; Elvira C; San Román J; Cifuentes A
    Electrophoresis; 2006 Mar; 27(5-6):1041-9. PubMed ID: 16470781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip micropatterning of plastic (cylic olefin copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods.
    Pu Q; Oyesanya O; Thompson B; Liu S; Alvarez JC
    Langmuir; 2007 Jan; 23(3):1577-83. PubMed ID: 17241090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of PDMS by gradient-induced migration of embedded Pluronic.
    Wu Z; Hjort K
    Lab Chip; 2009 Jun; 9(11):1500-3. PubMed ID: 19458853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption.
    Wu D; Zhao B; Dai Z; Qin J; Lin B
    Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature- and light-responsive blends of pluronic F127 and poly(N,N-dimethylacrylamide-co-methacryloyloxyazobenzene).
    Alvarez-Lorenzo C; Deshmukh S; Bromberg L; Hatton TA; Sández-Macho I; Concheiro A
    Langmuir; 2007 Nov; 23(23):11475-81. PubMed ID: 17918871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays.
    Shen H; Qu F; Xia Y; Jiang X
    Anal Chem; 2018 Mar; 90(6):3697-3702. PubMed ID: 29478312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward immunoassay chips: Facile immobilization of antibodies on cyclic olefin copolymer substrates through pre-activated polymer adlayers.
    Sung D; Shin DH; Jon S
    Biosens Bioelectron; 2011 May; 26(9):3967-72. PubMed ID: 21489776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-coated microfluidic devices for chip electrophoresis.
    Schulze M; Belder D
    Electrophoresis; 2012 Jan; 33(2):370-8. PubMed ID: 22222981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for patterned in situ biofunctionalization in injection-molded microfluidic devices.
    Schütte J; Freudigmann C; Benz K; Böttger J; Gebhardt R; Stelzle M
    Lab Chip; 2010 Oct; 10(19):2551-8. PubMed ID: 20676423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.