These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 24061927)
1. Morphing methods to visualize coarse-grained protein dynamics. Weiss DR; Koehl P Methods Mol Biol; 2014; 1084():271-82. PubMed ID: 24061927 [TBL] [Abstract][Full Text] [Related]
2. MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Franklin J; Koehl P; Doniach S; Delarue M Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W477-82. PubMed ID: 17545201 [TBL] [Abstract][Full Text] [Related]
3. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Tekpinar M; Zheng W Proteins; 2010 Aug; 78(11):2469-81. PubMed ID: 20602461 [TBL] [Abstract][Full Text] [Related]
4. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations. Olson MA; Chaudhury S; Lee MS J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008 [TBL] [Abstract][Full Text] [Related]
5. Probing the free energy landscape of the FBP28WW domain using multiple techniques. Periole X; Allen LR; Tamiola K; Mark AE; Paci E J Comput Chem; 2009 May; 30(7):1059-68. PubMed ID: 18942730 [TBL] [Abstract][Full Text] [Related]
6. A coarse-grained protein force field for folding and structure prediction. Maupetit J; Tuffery P; Derreumaux P Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832 [TBL] [Abstract][Full Text] [Related]
7. Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins. Zhuravlev PI; Materese CK; Papoian GA J Phys Chem B; 2009 Jul; 113(26):8800-12. PubMed ID: 19453123 [TBL] [Abstract][Full Text] [Related]
8. iFold: a platform for interactive folding simulations of proteins. Sharma S; Ding F; Nie H; Watson D; Unnithan A; Lopp J; Pozefsky D; Dokholyan NV Bioinformatics; 2006 Nov; 22(21):2693-4. PubMed ID: 16940324 [TBL] [Abstract][Full Text] [Related]
9. Energy landscapes and properties of biomolecules. Wales DJ Phys Biol; 2005 Nov; 2(4):S86-93. PubMed ID: 16280625 [TBL] [Abstract][Full Text] [Related]
10. Conformational ensembles and sampled energy landscapes: Analysis and comparison. Cazals F; Dreyfus T; Mazauric D; Roth CA; Robert CH J Comput Chem; 2015 Jun; 36(16):1213-31. PubMed ID: 25994596 [TBL] [Abstract][Full Text] [Related]
11. The nature of folded states of globular proteins. Honeycutt JD; Thirumalai D Biopolymers; 1992 Jun; 32(6):695-709. PubMed ID: 1643270 [TBL] [Abstract][Full Text] [Related]
12. Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Stumpff-Kane AW; Maksimiak K; Lee MS; Feig M Proteins; 2008 Mar; 70(4):1345-56. PubMed ID: 17876825 [TBL] [Abstract][Full Text] [Related]
13. Single molecule conformational dynamics of adenylate kinase: energy landscape, structural correlations, and transition state ensembles. Lu Q; Wang J J Am Chem Soc; 2008 Apr; 130(14):4772-83. PubMed ID: 18338887 [TBL] [Abstract][Full Text] [Related]
14. Exploring multi-dimensional coordinate-dependent diffusion dynamics on the energy landscape of protein conformation change. Lai Z; Zhang K; Wang J Phys Chem Chem Phys; 2014 Apr; 16(14):6486-95. PubMed ID: 24605364 [TBL] [Abstract][Full Text] [Related]
15. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Chu JW; Voth GA Biophys J; 2007 Dec; 93(11):3860-71. PubMed ID: 17704151 [TBL] [Abstract][Full Text] [Related]
16. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Schueler-Furman O; Wang C; Baker D Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249 [TBL] [Abstract][Full Text] [Related]
17. Domain decomposition-based structural condensation of large protein structures for understanding their conformational dynamics. Kim JI; Na S; Eom K J Comput Chem; 2011 Jan; 32(1):161-9. PubMed ID: 20645300 [TBL] [Abstract][Full Text] [Related]
18. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Chan HS; Zhang Z; Wallin S; Liu Z Annu Rev Phys Chem; 2011; 62():301-26. PubMed ID: 21453060 [TBL] [Abstract][Full Text] [Related]
19. Balancing bond, nonbond, and gō-like terms in coarse grain simulations of conformational dynamics. Hills RD Methods Mol Biol; 2014; 1084():123-40. PubMed ID: 24061919 [TBL] [Abstract][Full Text] [Related]
20. Acetylcholinesterase in motion: visualizing conformational changes in crystal structures by a morphing procedure. Zeev-Ben-Mordehai T; Silman I; Sussman JL Biopolymers; 2003 Mar; 68(3):395-406. PubMed ID: 12601798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]