BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 240622)

  • 1. Inhibition of pigment movement by cytochalasin B in the chromatophores of the sea urchin Centrostephanus longispinus.
    Dambach M; Weber W
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):49-52. PubMed ID: 240622
    [No Abstract]   [Full Text] [Related]  

  • 2. Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus.
    Gras H
    Eur J Cell Biol; 1981 Feb; 23(2):258-66. PubMed ID: 7202417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus.
    Weber W; Gras H
    Cell Tissue Res; 1980; 206(1):21-33. PubMed ID: 7357591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-sensitivity of isolated pigment cells of the sea urchin Centrostephanus longispinus.
    Weber W; Dambach M
    Cell Tissue Res; 1974 Apr; 148(3):437-40. PubMed ID: 4831958
    [No Abstract]   [Full Text] [Related]  

  • 5. Light-induced alterations in cell shape and pigment displacement in chromatophores of the sea urchin Centrostephanus longispinus.
    Gras H; Weber W
    Cell Tissue Res; 1977 Aug; 182(2):165-76. PubMed ID: 902301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea).
    Robison WG; Charlton JS
    J Exp Zool; 1973 Dec; 186(3):279-304. PubMed ID: 4765352
    [No Abstract]   [Full Text] [Related]  

  • 7. [Mobile ameboid pigment cells in the epithelium of the sea urchin Centrostephanus longispinus. A new type of color-change mechanism].
    Weber W; Dambach M
    Z Zellforsch Mikrosk Anat; 1972; 133(1):87-102. PubMed ID: 4639183
    [No Abstract]   [Full Text] [Related]  

  • 8. Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea: Decapoda).
    Lambert DT; Crowe JH
    Comp Biochem Physiol C Comp Pharmacol; 1976; 54(2):115-21. PubMed ID: 8255
    [No Abstract]   [Full Text] [Related]  

  • 9. Functional aspects of the microtubule system in chromatophores of the sea urchin Centrostephanus longispinus.
    Lehmann M; Weber W
    Prog Clin Biol Res; 1988; 256():453-9. PubMed ID: 3368496
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of cytochalasin B on pigment dispersion and aggregation in perfused Xenopus laevis tailfin melanophores.
    Fisher M; Lyerla TA
    J Cell Physiol; 1974 Feb; 83(1):117-29. PubMed ID: 4360295
    [No Abstract]   [Full Text] [Related]  

  • 11. Action of biogenic amines on crustacean chromatophores--IV. Analysis of the synergistic erythrophoric pigment dispersion evoked by 5-hydroxytryptamine and lysergic acid diethylamide in the dwarf crayfish, Cambarellus shufeldti.
    Rao KR; Fingerman M
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jun; 51(1):53-8. PubMed ID: 239824
    [No Abstract]   [Full Text] [Related]  

  • 12. Movement of pigment granules within melanophores of an isolated fish scale. Effects of cytochalasin B on melanophores.
    Ota T
    Biol Bull; 1974 Apr; 146(2):258-66. PubMed ID: 4822764
    [No Abstract]   [Full Text] [Related]  

  • 13. Cortical reorganization following fertilization of sea urchin eggs: sensitivity to cytochalasin B.
    Banzhaf WC; Warren RH; McClay DR
    Dev Biol; 1980 Dec; 80(2):506-15. PubMed ID: 6778750
    [No Abstract]   [Full Text] [Related]  

  • 14. Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores.
    Tuma MC; Josefsson L; Castrucci AM
    Pigment Cell Res; 1995 Aug; 8(4):215-20. PubMed ID: 8610073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cyclic AMP and cytochalasin B on tissue cultured melanophores of Xenopus laevis.
    Lyerla TA; Novales RR
    J Cell Physiol; 1972 Oct; 80(2):243-51. PubMed ID: 4344774
    [No Abstract]   [Full Text] [Related]  

  • 16. Organization of microfilaments in sea urchin (Arbacia punctulata) eggs at fertilization: effects of cytochalasin B.
    Longo FJ
    Dev Biol; 1980 Feb; 74(2):422-33. PubMed ID: 7189488
    [No Abstract]   [Full Text] [Related]  

  • 17. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of the medaka, Oryzias latipes.
    Morishita F; Katayama H; Yamada K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):279-85. PubMed ID: 2861947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitotic and pigment-translocating activities of cultured chromatophores of the guppy, Lebistes reticulatus.
    Powers EA; Rao KR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):21-9. PubMed ID: 6146472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common origin of pigment cells.
    Bagnara JT; Matsumoto J; Ferris W; Frost SK; Turner WA; Tchen TT; Taylor JD
    Science; 1979 Feb; 203(4379):410-5. PubMed ID: 760198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ACTH, adenyl compounds, and methylxanthines on goldfish erythrophores in culture.
    Ozato K
    Gen Comp Endocrinol; 1977 Mar; 31(3):335-42. PubMed ID: 192632
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.