These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24062669)

  • 1. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design.
    Lotte F; Larrue F; Mühl C
    Front Hum Neurosci; 2013; 7():568. PubMed ID: 24062669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of user training methods in brain computer interfaces based on mental tasks.
    Roc A; Pillette L; Mladenovic J; Benaroch C; N'Kaoua B; Jeunet C; Lotte F
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of user learning during long-term BCI training for the Cybathlon competition.
    Tortora S; Beraldo G; Bettella F; Formaggio E; Rubega M; Del Felice A; Masiero S; Carli R; Petrone N; Menegatti E; Tonin L
    J Neuroeng Rehabil; 2022 Jul; 19(1):69. PubMed ID: 35790978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training.
    Ivanov N; Chau T
    Front Comput Neurosci; 2023; 17():1108889. PubMed ID: 36860616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates.
    Jeunet C; N'Kaoua B; Lotte F
    Prog Brain Res; 2016; 228():3-35. PubMed ID: 27590964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardization of protocol design for user training in EEG-based brain-computer interface.
    Mladenović J
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33217745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.
    Perdikis S; Tonin L; Saeedi S; Schneider C; Millán JDR
    PLoS Biol; 2018 May; 16(5):e2003787. PubMed ID: 29746465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.
    Leeb R; Perdikis S; Tonin L; Biasiucci A; Tavella M; Creatura M; Molina A; Al-Khodairy A; Carlson T; Millán JD
    Artif Intell Med; 2013 Oct; 59(2):121-32. PubMed ID: 24119870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.
    Friedrich EV; Neuper C; Scherer R
    PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body.
    Kübler A; Neumann N
    Prog Brain Res; 2005; 150():513-25. PubMed ID: 16186045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Guiding Systems for Brain-Computer Interfaces.
    Kosmyna N; Lécuyer A
    Front Hum Neurosci; 2017; 11():396. PubMed ID: 28824400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.