BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24062729)

  • 1. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics.
    Emerson D; Field EK; Chertkov O; Davenport KW; Goodwin L; Munk C; Nolan M; Woyke T
    Front Microbiol; 2013; 4():254. PubMed ID: 24062729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR.
    Zhou N; Keffer JL; Polson SW; Chan CS
    Appl Environ Microbiol; 2022 Jan; 88(2):e0159521. PubMed ID: 34788064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 4. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge.
    Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K
    Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of the Metabolic Potential of Acidophilic
    Mühling M; Poehlein A; Stuhr A; Voitel M; Daniel R; Schlömann M
    Front Microbiol; 2016; 7():2082. PubMed ID: 28066396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer
    Zhou N; Kupper RJ; Catalano JG; Thompson A; Chan CS
    Environ Sci Technol; 2022 Dec; 56(23):17443-17453. PubMed ID: 36417801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and correlation of iron oxidizers and carbon-fixing microbial communities in natural wetlands.
    Dong L; Wang X; Tong H; Lv Y; Chen M; Li J; Liu C
    Sci Total Environ; 2024 Feb; 912():168719. PubMed ID: 38040374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
    Kato S; Ohkuma M; Powell DH; Krepski ST; Oshima K; Hattori M; Shapiro N; Woyke T; Chan CS
    Front Microbiol; 2015; 6():1265. PubMed ID: 26617599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of human settlement on the distribution and diversity of iron-oxidizing bacteria belonging to the Gallionellaceae in tropical streams.
    Reis MP; Avila MP; Costa PS; Barbosa FA; Laanbroek HJ; Chartone-Souza E; Nascimento AM
    Front Microbiol; 2014; 5():630. PubMed ID: 25505456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Candidatus ferrigenium straubiae' sp. nov., 'Candidatus ferrigenium bremense' sp. nov., 'Candidatus ferrigenium altingense' sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae.
    Huang YM; Jakus N; Straub D; Konstantinidis KT; Blackwell N; Kappler A; Kleindienst S
    Syst Appl Microbiol; 2022 May; 45(3):126306. PubMed ID: 35279466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms.
    Hoover RL; Keffer JL; Polson SW; Chan CS
    bioRxiv; 2023 Feb; ():. PubMed ID: 36747706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing electron transfer components from an Fe(II) oxidizing bacterium.
    Jain A; Kalb MJ; Gralnick JA
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36111788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation.
    Emerson D
    Biochem Soc Trans; 2012 Dec; 40(6):1211-6. PubMed ID: 23176456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep.
    Krepski ST; Hanson TE; Chan CS
    Environ Microbiol; 2012 Jul; 14(7):1671-80. PubMed ID: 22151253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.
    Chiu BK; Kato S; McAllister SM; Field EK; Chan CS
    Front Microbiol; 2017; 8():1280. PubMed ID: 28769885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Insights into Two Novel Fe(II)-Oxidizing
    Blackwell N; Bryce C; Straub D; Kappler A; Kleindienst S
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium.
    Singer E; Emerson D; Webb EA; Barco RA; Kuenen JG; Nelson WC; Chan CS; Comolli LR; Ferriera S; Johnson J; Heidelberg JF; Edwards KJ
    PLoS One; 2011; 6(9):e25386. PubMed ID: 21966516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle.
    Comolli LR; Luef B; Chan CS
    Environ Microbiol; 2011 Nov; 13(11):2915-29. PubMed ID: 21895918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.