These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24062802)

  • 1. Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States.
    Bradley St Clair J; Kilkenny FF; Johnson RC; Shaw NL; Weaver G
    Evol Appl; 2013 Sep; 6(6):933-48. PubMed ID: 24062802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating adaptive genetic traits to climate for Sandberg bluegrass from the intermountain western United States.
    Johnson RC; Horning ME; Espeland EK; Vance-Borland K
    Evol Appl; 2015 Feb; 8(2):172-84. PubMed ID: 25685192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population history provides foundational knowledge for utilizing and developing native plant restoration materials.
    Massatti R; Prendeville HR; Larson S; Richardson BA; Waldron B; Kilkenny FF
    Evol Appl; 2018 Dec; 11(10):2025-2039. PubMed ID: 30459846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking Genetic Variation in Adaptive Plant Traits to Climate in Tetraploid and Octoploid Basin Wildrye [Leymus cinereus (Scribn. & Merr.) A. Love] in the Western U.S.
    Johnson RC; Vance-Borland K
    PLoS One; 2016; 11(2):e0148982. PubMed ID: 26881894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-based seed transfer of a widespread shrub: population shifts, restoration strategies, and the trailing edge.
    Richardson BA; Chaney L
    Ecol Appl; 2018 Dec; 28(8):2165-2174. PubMed ID: 30198207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant provenance can influence the impacts of temperature and moisture on intraspecific competition in
    Donnelly S; Akin-Fajiye M; Fraser LH
    Ecol Evol; 2023 Oct; 13(10):e10603. PubMed ID: 37886429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).
    Bansal S; Harrington CA; Gould PJ; St Clair JB
    Glob Chang Biol; 2015 Feb; 21(2):947-58. PubMed ID: 25156589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local adaptation of seed and seedling traits along a natural aridity gradient may both predict and constrain adaptive responses to climate change.
    Christie K; Pierson NR; Lowry DB; Holeski LM
    Am J Bot; 2022 Oct; 109(10):1529-1544. PubMed ID: 36129014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Genomic Selection to Develop Performance-Based Restoration Plant Materials.
    Jones TA; Monaco TA; Larson SR; Hamerlynck EP; Crain JL
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive responses reveal contemporary and future ecotypes in a desert shrub.
    Richardson BA; Kitchen SG; Pendleton RL; Pendleton BK; Germino MJ; Rehfeldt GE; Meyer SE
    Ecol Appl; 2014 Mar; 24(2):413-27. PubMed ID: 24689151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of considering soils in seed transfer zone development: evidence from a study of the native Bromus marginatus.
    Gibson A; Nelson CR; Rinehart S; Archer V; Eramian A
    Ecol Appl; 2019 Mar; 29(2):e01835. PubMed ID: 30644139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-related genetic variation in a threatened tree species, Pinus albicaulis.
    Warwell MV; Shaw RG
    Am J Bot; 2017 Aug; 104(8):1205-1218. PubMed ID: 29756223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species.
    Etterson JR; Cornett MW; White MA; Kavajecz LC
    Ecol Appl; 2020 Jul; 30(5):e02092. PubMed ID: 32058650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.
    Bansal S; St Clair JB; Harrington CA; Gould PJ
    Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local adaptation to precipitation in the perennial grass
    Blumenthal DM; LeCain DR; Porensky LM; Leger EA; Gaffney R; Ocheltree TW; Pilmanis AM
    Evol Appl; 2021 Feb; 14(2):524-535. PubMed ID: 33664792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature.
    Fraser LH; Greenall A; Carlyle C; Turkington R; Friedman CR
    Ann Bot; 2009 Mar; 103(5):769-75. PubMed ID: 19088084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk of genetic maladaptation due to climate change in three major European tree species.
    Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C
    Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genecology of Douglas fir in western Oregon and Washington.
    St Clair JB; Mandel NL; Vance-Borland KW
    Ann Bot; 2005 Dec; 96(7):1199-214. PubMed ID: 16246849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape.
    Frank A; Sperisen C; Howe GT; Brang P; Walthert L; St Clair JB; Heiri C
    Ecology; 2017 Jan; 98(1):211-227. PubMed ID: 28052396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial grain of adaptation is much finer than ecoregional-scale common gardens reveal.
    Davidson BE; Germino MJ
    Ecol Evol; 2020 Sep; 10(18):9920-9931. PubMed ID: 33005354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.