BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24062879)

  • 1. Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging.
    Orlandi I; Ronzulli R; Casatta N; Vai M
    Oxid Med Cell Longev; 2013; 2013():802870. PubMed ID: 24062879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors.
    Casatta N; Porro A; Orlandi I; Brambilla L; Vai M
    Biochim Biophys Acta; 2013 Mar; 1833(3):593-601. PubMed ID: 23159490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae.
    Bergman A; Hellgren J; Moritz T; Siewers V; Nielsen J; Chen Y
    Microb Cell Fact; 2019 Feb; 18(1):25. PubMed ID: 30709397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2012 Aug; 11():104. PubMed ID: 22873488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.
    Zhao R; Bean SR; Crozier-Dodson BA; Fung DY; Wang D
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):75-85. PubMed ID: 18839230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent.
    Orlandi I; Stamerra G; Strippoli M; Vai M
    Redox Biol; 2017 Aug; 12():745-754. PubMed ID: 28412652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: a few keys for improving ethanol fermentation.
    Teles GH; da Silva JM; Mendonça AA; de Morais Junior MA; de Barros Pita W
    Yeast; 2018 Oct; 35(10):577-584. PubMed ID: 30006941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular mechanism of chronological aging in yeast.
    Burtner CR; Murakami CJ; Kennedy BK; Kaeberlein M
    Cell Cycle; 2009 Apr; 8(8):1256-70. PubMed ID: 19305133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of culture conditions on ethanol and acetic acid metabolism of yeast].
    Guiraud JP; Vezinhet F; Galzy P; Albert J
    Arch Mikrobiol; 1972; 82(2):101-10. PubMed ID: 4554270
    [No Abstract]   [Full Text] [Related]  

  • 10. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.
    Aghazadeh M; Ladisch MR; Engelberth AS
    Biotechnol Prog; 2016 Jul; 32(4):929-37. PubMed ID: 27090191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae.
    Lee YJ; Jang JW; Kim KJ; Maeng PJ
    Yeast; 2011 Feb; 28(2):153-66. PubMed ID: 21246628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I; Krijger JJ; Breunig KD; Vandenhaute J
    Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.
    Woo JM; Yang KM; Kim SU; Blank LM; Park JB
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6085-94. PubMed ID: 24706214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae.
    Pedler SM; Wallace PG; Wallace JC; Berry MN
    Yeast; 1997 Feb; 13(2):119-25. PubMed ID: 9046093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide supplementation phenocopies SIR2 inactivation by modulating carbon metabolism and respiration during yeast chronological aging.
    Orlandi I; Pellegrino Coppola D; Strippoli M; Ronzulli R; Vai M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):277-287. PubMed ID: 27320176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging.
    Abbiati F; Garagnani SA; Orlandi I; Vai M
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2013 Jan; 12():1. PubMed ID: 23282100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol.
    Keulers M; Suzuki T; Satroutdinov AD; Kuriyama H
    FEMS Microbiol Lett; 1996 Sep; 142(2-3):253-8. PubMed ID: 8810509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.