BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24062982)

  • 21. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β.
    Pierrat MJ; Marsaud V; Mauviel A; Javelaud D
    J Biol Chem; 2012 May; 287(22):17996-8004. PubMed ID: 22496449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MITF, the Janus transcription factor of melanoma.
    Koludrovic D; Davidson I
    Future Oncol; 2013 Feb; 9(2):235-44. PubMed ID: 23414473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations.
    Corry GN; Underhill DA
    Pigment Cell Res; 2005 Dec; 18(6):427-38. PubMed ID: 16280008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BRN2, a POUerful driver of melanoma phenotype switching and metastasis.
    Fane ME; Chhabra Y; Smith AG; Sturm RA
    Pigment Cell Melanoma Res; 2019 Jan; 32(1):9-24. PubMed ID: 29781575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Downregulation of the paired box gene 3 inhibits the progression of skin cutaneous melanoma by inhibiting c-MET tyrosine kinase : PAX3 downregulation inhibits melanoma progression.
    Zhang K; Yu C; Tian R; Zhang W; Tang S; Wang G
    Mol Biol Rep; 2022 Oct; 49(10):9137-9145. PubMed ID: 36057879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF.
    Wellbrock C; Rana S; Paterson H; Pickersgill H; Brummelkamp T; Marais R
    PLoS One; 2008 Jul; 3(7):e2734. PubMed ID: 18628967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NFATc2 is an intrinsic regulator of melanoma dedifferentiation.
    Perotti V; Baldassari P; Molla A; Vegetti C; Bersani I; Maurichi A; Santinami M; Anichini A; Mortarini R
    Oncogene; 2016 Jun; 35(22):2862-72. PubMed ID: 26387540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3.
    Potterf SB; Furumura M; Dunn KJ; Arnheiter H; Pavan WJ
    Hum Genet; 2000 Jul; 107(1):1-6. PubMed ID: 10982026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of melanoma inhibitory activity (MIA) expression in melanoma cells leads to molecular and phenotypic changes.
    Tatzel J; Poser I; Schroeder J; Bosserhoff AK
    Pigment Cell Res; 2005 Apr; 18(2):92-101. PubMed ID: 15760338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.
    Yang T; Li X; Huang Q; Li L; Chai Y; Sun L; Wang X; Zhu Y; Wang Z; Huang Z; Li Y; Wu H
    Clin Genet; 2013 Jan; 83(1):78-82. PubMed ID: 22320238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance.
    Wessely A; Steeb T; Berking C; Heppt MV
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf.
    Hornyak TJ; Hayes DJ; Chiu LY; Ziff EB
    Mech Dev; 2001 Mar; 101(1-2):47-59. PubMed ID: 11231058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools.
    Bianchi-Smiraglia A; Bagati A; Fink EE; Moparthy S; Wawrzyniak JA; Marvin EK; Battaglia S; Jowdy P; Kolesnikova M; Foley CE; Berman AE; Kozlova NI; Lipchick BC; Paul-Rosner LM; Bshara W; Ackroyd JJ; Shewach DS; Nikiforov MA
    Oncogene; 2017 Jan; 36(1):84-96. PubMed ID: 27181209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.
    Poindexter KM; Matthew S; Aronchik I; Firestone GL
    Cell Biol Toxicol; 2016 Apr; 32(2):103-19. PubMed ID: 27055402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer.
    Lang D; Epstein JA
    Hum Mol Genet; 2003 Apr; 12(8):937-45. PubMed ID: 12668617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MITF Drives a Reversible Drug-Tolerant State in Melanoma.
    Cancer Discov; 2016 May; 6(5):OF11. PubMed ID: 27012829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Critical role of glioma-associated oncogene homolog 1 in maintaining invasive and mesenchymal-like properties of melanoma cells.
    Gunarta IK; Li R; Nakazato R; Suzuki R; Boldbaatar J; Suzuki T; Yoshioka K
    Cancer Sci; 2017 Aug; 108(8):1602-1611. PubMed ID: 28635133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.
    Bartlett D; Boyle GM; Ziman M; Medic S
    PLoS One; 2015; 10(4):e0124154. PubMed ID: 25880082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage.
    Singh M; Cai H; Bunse M; Feschotte C; Izsvák Z
    Viruses; 2020 Nov; 12(11):. PubMed ID: 33202765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.
    Serini S; Zinzi A; Ottes Vasconcelos R; Fasano E; Riillo MG; Celleno L; Trombino S; Cassano R; Calviello G
    J Dermatol Sci; 2016 Nov; 84(2):149-159. PubMed ID: 27600927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.