BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24062998)

  • 1. The influence of chain microstructure of biodegradable copolyesters obtained with low-toxic zirconium initiator to in vitro biocompatibility.
    Orchel A; Jelonek K; Kasperczyk J; Dobrzynski P; Marcinkowski A; Pamula E; Orchel J; Bielecki I; Kulczycka A
    Biomed Res Int; 2013; 2013():176946. PubMed ID: 24062998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films.
    Ishaug-Riley SL; Okun LE; Prado G; Applegate MA; Ratcliffe A
    Biomaterials; 1999 Dec; 20(23-24):2245-56. PubMed ID: 10614931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytocompatibility of aliphatic polyesters--in vitro study on fibroblasts and macrophages.
    Pamula E; Dobrzynski P; Szot B; Kretek M; Krawciow J; Plytycz B; Chadzinska M
    J Biomed Mater Res A; 2008 Nov; 87(2):524-35. PubMed ID: 18186049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface functionalization of degradable polymers by covalent grafting.
    Källrot M; Edlund U; Albertsson AC
    Biomaterials; 2006 Mar; 27(9):1788-96. PubMed ID: 16257444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aliphatic polyesters on activation of the immune system: studies on macrophages.
    Scislowska-Czarnecka A; Pamula E; Tlalka A; Kolaczkowska E
    J Biomater Sci Polym Ed; 2012; 23(6):715-38. PubMed ID: 21375810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of delivery systems with risperidone based on biodegradable terpolymers.
    Turek A; Borecka A; Janeczek H; Sobota M; Kasperczyk J
    Int J Pharm; 2018 Sep; 548(1):159-172. PubMed ID: 29953927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters.
    Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers.
    Morokov ES; Demina VA; Sedush NG; Kalinin KT; Khramtsova EA; Dmitryakov PV; Bakirov AV; Grigoriev TE; Levin VM; Chvalun SN
    Acta Biomater; 2020 Jun; 109():61-72. PubMed ID: 32294555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.
    Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M
    Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat costochondral cell characteristics on poly (L-lactide-co-epsilon-caprolactone) scaffolds.
    Honda M; Morikawa N; Hata K; Yada T; Morita S; Ueda M; Kimata K
    Biomaterials; 2003 Sep; 24(20):3511-9. PubMed ID: 12809780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers.
    Fernández J; Larrañaga A; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Jul; 35():39-50. PubMed ID: 24732304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.