These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 24063166)
1. [Preparation of spider silk protein bilayer small diameter vascular scaffold and blood compatibility analysis in vitro]. Zhao L; Xu Y; Qiu H; Li M; Chen Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):800-4. PubMed ID: 24063166 [TBL] [Abstract][Full Text] [Related]
2. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Xiang P; Wang SS; He M; Han YH; Zhou ZH; Chen DL; Li M; Ma LQ Colloids Surf B Biointerfaces; 2018 Mar; 163():19-28. PubMed ID: 29268210 [TBL] [Abstract][Full Text] [Related]
3. Cytocompatibility of electrospun nanofiber tubular scaffolds for small diameter tissue engineering blood vessels. Xiang P; Li M; Zhang CY; Chen DL; Zhou ZH Int J Biol Macromol; 2011 Oct; 49(3):281-8. PubMed ID: 21600916 [TBL] [Abstract][Full Text] [Related]
4. [Preparation of three-dimensional porous scaffold of PLGA-silk fibroin-collagen nanofiber and its cytocompatibility study]. Wu G; Dong C; Wang G; Gao W; Fan H; Xiao W; Zhang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Aug; 23(8):1007-11. PubMed ID: 19728623 [TBL] [Abstract][Full Text] [Related]
5. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441 [No Abstract] [Full Text] [Related]
7. In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers. Haghjooy Javanmard S; Anari J; Zargar Kharazi A; Vatankhah E J Biomater Appl; 2016 Sep; 31(3):438-49. PubMed ID: 27247131 [TBL] [Abstract][Full Text] [Related]
8. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]
9. Three-layered scaffolds for artificial esophagus using poly(ɛ-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. Chung EJ; Ju HW; Park HJ; Park CH J Biomed Mater Res A; 2015 Jun; 103(6):2057-65. PubMed ID: 25294581 [TBL] [Abstract][Full Text] [Related]
10. [Cytocompatibility study of Arg-Gly-Asp-recombinant spider silk protein/poly vinyl alcohol scaffold]. Wang H; Wei M; Xue Z; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jun; 23(6):747-50. PubMed ID: 19594027 [TBL] [Abstract][Full Text] [Related]
11. Bilayered vascular grafts based on silk proteins. Liu S; Dong C; Lu G; Lu Q; Li Z; Kaplan DL; Zhu H Acta Biomater; 2013 Nov; 9(11):8991-9003. PubMed ID: 23851155 [TBL] [Abstract][Full Text] [Related]
12. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [TBL] [Abstract][Full Text] [Related]
13. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
14. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
15. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix. McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970 [TBL] [Abstract][Full Text] [Related]
16. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E; Farè S; Catto V; Bertoldi S; Semnani D; Karbasi S; Tanzi MC J Appl Biomater Funct Mater; 2015 Jul; 13(2):e156-68. PubMed ID: 25589157 [TBL] [Abstract][Full Text] [Related]
17. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. Deepthi S; Nivedhitha Sundaram M; Vijayan P; Nair SV; Jayakumar R Int J Biol Macromol; 2018 Apr; 109():85-98. PubMed ID: 29247731 [TBL] [Abstract][Full Text] [Related]
18. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Milleret V; Hefti T; Hall H; Vogel V; Eberli D Acta Biomater; 2012 Dec; 8(12):4349-56. PubMed ID: 22842036 [TBL] [Abstract][Full Text] [Related]
19. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Wei G; Li C; Fu Q; Xu Y; Li H Int Urol Nephrol; 2015 Jan; 47(1):95-9. PubMed ID: 25281313 [TBL] [Abstract][Full Text] [Related]
20. [Property studies on three-dimensional porous blended silk scaffolds]. Rao J; Shen J; Quan D; Xu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]