These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24063609)

  • 1. Enhanced kinetics of pseudo first-order hydrolysis in liquid phase coexistent with ice.
    Anzo K; Harada M; Okada T
    J Phys Chem A; 2013 Oct; 117(41):10619-25. PubMed ID: 24063609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical kinetics of reactions in the unfrozen solution of ice.
    Takenaka N; Bandow H
    J Phys Chem A; 2007 Sep; 111(36):8780-6. PubMed ID: 17705357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Number density of liquid inclusions formed in frozen aqueous electrolyte.
    Hashimoto T; Harada M; Nojima S; Okada T
    Chemphyschem; 2013 Oct; 14(14):3410-6. PubMed ID: 23943310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced aqueous photochemical reaction rates after freezing.
    Grannas AM; Bausch AR; Mahanna KM
    J Phys Chem A; 2007 Nov; 111(43):11043-9. PubMed ID: 17918916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-thaw behaviour of aqueous glucose solutions--the crystallisation of cubic ice.
    Thanatuksorn P; Kajiwara K; Murase N; Franks F
    Phys Chem Chem Phys; 2008 Sep; 10(35):5452-8. PubMed ID: 18766243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC; Markovic M; Frukhtbeyn SA; Takagi S
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.
    Takenaka N; Tanaka M; Okitsu K; Bandow H
    J Phys Chem A; 2006 Sep; 110(36):10628-32. PubMed ID: 16956245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of OH oxidation of small organic dicarboxylic acids in ice: comparison to behavior in aqueous solution.
    Gao SS; Abbatt JP
    J Phys Chem A; 2011 Sep; 115(35):9977-86. PubMed ID: 21718014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa.
    Andersson O; Johari GP
    J Chem Phys; 2011 Mar; 134(12):124903. PubMed ID: 21456699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.
    Ogawa S; Asakura K; Osanai S
    Phys Chem Chem Phys; 2012 Dec; 14(47):16312-20. PubMed ID: 23133837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient rate enhancement due to intramolecular general base (IGB) assistance in the hydrolysis of N-(o-hydroxyphenyl)phthalimide.
    Sim YL; Ariffin A; Khan MN
    J Org Chem; 2007 Mar; 72(7):2392-401. PubMed ID: 17341117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrations of a triplet excited state are enhanced in illuminated ice.
    Chen Z; Anastasio C
    Environ Sci Process Impacts; 2017 Jan; 19(1):12-21. PubMed ID: 28060386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation loss of dissolved volatile substances from ice surfaces.
    Sato K; Takenaka N; Bandow H; Maeda Y
    J Phys Chem A; 2008 Aug; 112(33):7600-7. PubMed ID: 18661928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of gas-phase bromine from interaction of ozone with frozen and liquid NaCl/NaBr solutions: quantitative separation of surficial chemistry from bulk-phase reaction.
    Oldridge NW; Abbatt JP
    J Phys Chem A; 2011 Mar; 115(12):2590-8. PubMed ID: 21388165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of ammonium nitrite denitrification by freezing: determination of activation energy from the temperature of maximum reaction rate.
    Takenaka N; Takahashi I; Suekane H; Yamamoto K; Sadanaga Y; Bandow H
    J Phys Chem A; 2011 Dec; 115(50):14446-51. PubMed ID: 22082222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Na+ on DNA reactions with aromatic epoxides and diol epoxides: evidence that DNA catalyzes the formation of benzo[a]pyrene and benz[a]anthracene adducts at intercalation sites.
    Fernando H; Huang CR; Milliman A; Shu L; LeBreton PR
    Chem Res Toxicol; 1996 Dec; 9(8):1391-402. PubMed ID: 8951245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model".
    Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.