BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24063697)

  • 1. Design and fabrication of biosensing interface for waveguide-mode sensor.
    Tanaka M; Yoshioka K; Hirata Y; Fujimaki M; Kuwahara M; Niwa O
    Langmuir; 2013 Oct; 29(42):13111-20. PubMed ID: 24063697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Biosensing Interface with Monolayers.
    Tanaka M; Niwa O
    Anal Sci; 2021 May; 37(5):673-682. PubMed ID: 33390417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of antibody functionality using different immobilization methods.
    Danczyk R; Krieder B; North A; Webster T; HogenEsch H; Rundell A
    Biotechnol Bioeng; 2003 Oct; 84(2):215-23. PubMed ID: 12966578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of modified surface for biosensing interface.
    Tanaka M; Sawaguchi T; Hirata Y; Niwa O; Tawa K; Sasakawa C; Kuraoka K
    J Colloid Interface Sci; 2017 Jul; 497():309-316. PubMed ID: 28288377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure.
    Awsiuk K; Bernasik A; Kitsara M; Budkowski A; Petrou P; Kakabakos S; Prauzner-Bechcicki S; Rysz J; Raptis I
    Colloids Surf B Biointerfaces; 2012 Feb; 90():159-68. PubMed ID: 22056253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.
    Ozhikandathil J; Packirisamy M
    J Biophotonics; 2013 May; 6(5):457-67. PubMed ID: 22829397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.
    Wang X; Fujimaki M; Kato T; Nomura K; Awazu K; Ohki Y
    Opt Express; 2011 Oct; 19(21):20205-13. PubMed ID: 21997031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy.
    Kurihara Y; Takama M; Sekiya T; Yoshihara Y; Ooya T; Takeuchi T
    Langmuir; 2012 Sep; 28(38):13609-15. PubMed ID: 22966896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma.
    Liu Y; Li X; Zhang Z; Zuo G; Cheng Z; Yu H
    Biomed Microdevices; 2009 Feb; 11(1):183-91. PubMed ID: 18819006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaffinity sensor based on nanoarchitectonic films: control of the specific adsorption of proteins through the dual role of an ethylene oxide spacer.
    Davila J; Toulemon D; Garnier T; Garnier A; Senger B; Voegel JC; Mésini PJ; Schaaf P; Boulmedais F; Jierry L
    Langmuir; 2013 Jun; 29(24):7488-98. PubMed ID: 23346932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity.
    Lakshmipriya T; Fujimaki M; Gopinath SC; Awazu K; Horiguchi Y; Nagasaki Y
    Analyst; 2013 May; 138(10):2863-70. PubMed ID: 23577343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection.
    Huang JG; Lee CL; Lin HM; Chuang TL; Wang WS; Juang RH; Wang CH; Lee CK; Lin SM; Lin CW
    Biosens Bioelectron; 2006 Oct; 22(4):519-25. PubMed ID: 16962763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors.
    Bolduc OR; Masson JF
    Langmuir; 2008 Oct; 24(20):12085-91. PubMed ID: 18823086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estrogen conjugation and antibody binding interactions in surface plasmon resonance biosensing.
    Mitchell JS; Wu Y; Cook CJ; Main L
    Steroids; 2006 Jul; 71(7):618-31. PubMed ID: 16704872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of biomolecules onto silica and silica-based surfaces for use in planar array biosensors.
    Shriver-Lake LC; Charles PT; Taitt CR
    Methods Mol Biol; 2009; 504():419-40. PubMed ID: 19159109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing.
    Wu Y; Chen C; Liu S
    Anal Chem; 2009 Feb; 81(4):1600-7. PubMed ID: 19140671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system.
    Uludağ Y; Tothill IE
    Talanta; 2010 Jun; 82(1):277-82. PubMed ID: 20685467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor.
    Misiakos K; Kakabakos SE; Petrou PS; Ruf HH
    Anal Chem; 2004 Mar; 76(5):1366-73. PubMed ID: 14987094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized silicon dioxide self-referenced plasmonic chip as point-of-care biosensor for stroke biomarkers NT-proBNP and S100β.
    Harpaz D; Koh B; Seet RCS; Abdulhalim I; Tok AIY
    Talanta; 2020 May; 212():120792. PubMed ID: 32113554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system.
    Choi HW; Sakata Y; Kurihara Y; Ooya T; Takeuchi T
    Anal Chim Acta; 2012 May; 728():64-8. PubMed ID: 22560282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.