These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24063773)
1. A streamlined implementation of the glutamine synthetase-based protein expression system. Knox R; Nettleship JE; Chang VT; Hui ZK; Santos AM; Rahman N; Ho LP; Owens RJ; Davis SJ BMC Biotechnol; 2013 Sep; 13():74. PubMed ID: 24063773 [TBL] [Abstract][Full Text] [Related]
2. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
3. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
4. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
5. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. Nakamura T; Omasa T J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187 [TBL] [Abstract][Full Text] [Related]
6. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells. Yamano N; Takahashi M; Ali Haghparast SM; Onitsuka M; Kumamoto T; Frank J; Omasa T J Biosci Bioeng; 2016 Aug; 122(2):226-31. PubMed ID: 26850366 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Sacco SA; Tuckowski AM; Trenary I; Kraft L; Betenbaugh MJ; Young JD; Smith KD Biotechnol Bioeng; 2022 Jul; 119(7):1712-1727. PubMed ID: 35312045 [TBL] [Abstract][Full Text] [Related]
8. Enhancing CHO cell productivity through a dual selection system using Aspg and Gs in glutamine free medium. Ha TK; Òdena A; Karottki KJC; Kim CL; Hefzi H; Lee GM; Faustrup Kildegaard H; Nielsen LK; Grav LM; Lewis NE Biotechnol Bioeng; 2023 Apr; 120(4):1159-1166. PubMed ID: 36562657 [TBL] [Abstract][Full Text] [Related]
9. Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker. Pu H; Cashion LM; Kretschmer PJ; Liu Z Mol Biotechnol; 1998 Aug; 10(1):17-25. PubMed ID: 9779420 [TBL] [Abstract][Full Text] [Related]
10. Study of the mechanism for increased protein expression via transcription potency reduction of the selection marker. Yang B; Zhou J; Zhao H; Wang A; Lei Y; Xie Q; Xiong S Bioprocess Biosyst Eng; 2019 May; 42(5):799-806. PubMed ID: 30730009 [TBL] [Abstract][Full Text] [Related]
11. Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Oberbek A; Matasci M; Hacker DL; Wurm FM Biotechnol Bioeng; 2011 Mar; 108(3):600-10. PubMed ID: 20967750 [TBL] [Abstract][Full Text] [Related]
12. Calcium phosphate transfection generates mammalian recombinant cell lines with higher specific productivity than polyfection. Chenuet S; Martinet D; Besuchet-Schmutz N; Wicht M; Jaccard N; Bon AC; Derouazi M; Hacker DL; Beckmann JS; Wurm FM Biotechnol Bioeng; 2008 Dec; 101(5):937-45. PubMed ID: 18781700 [TBL] [Abstract][Full Text] [Related]
13. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Daramola O; Stevenson J; Dean G; Hatton D; Pettman G; Holmes W; Field R Biotechnol Prog; 2014; 30(1):132-41. PubMed ID: 24106171 [TBL] [Abstract][Full Text] [Related]
14. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Jun SC; Kim MS; Hong HJ; Lee GM Biotechnol Prog; 2006; 22(3):770-80. PubMed ID: 16739961 [TBL] [Abstract][Full Text] [Related]
15. Improvement of the efficiency and quality in developing a new CHO host cell line. Huhn SC; Ou Y; Tang X; Jiang B; Liu R; Lin H; Du Z Biotechnol Prog; 2021 Sep; 37(5):e3185. PubMed ID: 34142466 [TBL] [Abstract][Full Text] [Related]
16. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126 [TBL] [Abstract][Full Text] [Related]
17. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Noh SM; Park JH; Lim MS; Kim JW; Lee GM Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181 [TBL] [Abstract][Full Text] [Related]
18. Development of an improved mammalian overexpression method for human CD62L. Brown HA; Roth G; Holzapfel G; Shen S; Rahbari K; Ireland J; Zou Z; Sun PD Protein Expr Purif; 2015 Jan; 105():8-13. PubMed ID: 25286402 [TBL] [Abstract][Full Text] [Related]
19. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
20. Using matrix attachment regions to improve recombinant protein production. Harraghy N; Buceta M; Regamey A; Girod PA; Mermod N Methods Mol Biol; 2012; 801():93-110. PubMed ID: 21987249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]