BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24063789)

  • 1. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model.
    Sahoo D; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2014 May; 33():24-42. PubMed ID: 24063789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain injury tolerance limit based on computation of axonal strain.
    Sahoo D; Deck C; Willinger R
    Accid Anal Prev; 2016 Jul; 92():53-70. PubMed ID: 27038501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of axonal elongation in head trauma finite element simulation.
    Chatelin S; Deck C; Renard F; Kremer S; Heinrich C; Armspach JP; Willinger R
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1905-19. PubMed ID: 22098889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a finite element human head model partially validated with thirty five experimental cases.
    Mao H; Zhang L; Jiang B; Genthikatti VV; Jin X; Zhu F; Makwana R; Gill A; Jandir G; Singh A; Yang KH
    J Biomech Eng; 2013 Nov; 135(11):111002. PubMed ID: 24065136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.
    Colgan NC; Gilchrist MD; Curran KM
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.
    Lee WH; Kim TS
    Med Eng Phys; 2012 Jan; 34(1):85-98. PubMed ID: 21820347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An axonal strain injury criterion for traumatic brain injury.
    Wright RM; Ramesh KT
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):245-60. PubMed ID: 21476072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiscale computational approach to estimating axonal damage under inertial loading of the head.
    Wright RM; Post A; Hoshizaki B; Ramesh KT
    J Neurotrauma; 2013 Jan; 30(2):102-18. PubMed ID: 22992118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue.
    Giordano C; Kleiven S
    J R Soc Interface; 2014 Feb; 11(91):20130914. PubMed ID: 24258158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
    Güllmar D; Haueisen J; Reichenbach JR
    Neuroimage; 2010 May; 51(1):145-63. PubMed ID: 20156576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
    Garimella HT; Kraft RH
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27502006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
    Tang CY; Ng GY; Wang ZW; Tsui CP; Zhang G
    Biomed Mater Eng; 2011; 21(1):9-24. PubMed ID: 21537060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury.
    Li J; Li XY; Feng DF; Gu L
    Eur J Neurosci; 2011 Mar; 33(5):933-45. PubMed ID: 21385236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying nonlinear anisotropic elastic material properties of biological tissue by use of membrane inflation.
    Bischoff JE; Drexler ES; Slifka AJ; McCowan CN
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):353-69. PubMed ID: 19396729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Mar; 49(3):991-999. PubMed ID: 33025318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK
    J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric locking free 3D finite element for modelling of anisotropic visco-hyperelastic behaviour of anterior cruciate ligament.
    Bijalwan A; Patel BP; Marieswaran M; Kalyanasundaram D
    J Biomech; 2018 May; 73():1-8. PubMed ID: 29599040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.