These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. Choi DW; Koh JY; Peters S J Neurosci; 1988 Jan; 8(1):185-96. PubMed ID: 2892896 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Ca2(+)-mobilizing excitatory amino acid receptors in cultured chick cortical cells. McMillian M; Pritchard GA; Miller LG Eur J Pharmacol; 1990 Oct; 189(4-5):253-66. PubMed ID: 1980647 [TBL] [Abstract][Full Text] [Related]
4. AMPA, kainate, and quisqualate activate a common receptor-channel complex on embryonic chick motoneurons. Zorumski CF; Yang J J Neurosci; 1988 Nov; 8(11):4277-86. PubMed ID: 2460595 [TBL] [Abstract][Full Text] [Related]
5. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. Blake JF; Yates RG; Brown MW; Collingridge GL Br J Pharmacol; 1989 May; 97(1):71-6. PubMed ID: 2566354 [TBL] [Abstract][Full Text] [Related]
6. Possible role of cGMP in excitatory amino acid induced cytotoxicity in cultured cerebral cortical neurons. Frandsen A; Andersen CF; Schousboe A Neurochem Res; 1992 Jan; 17(1):35-43. PubMed ID: 1371601 [TBL] [Abstract][Full Text] [Related]
7. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Radhakrishnan V; Henry JL Neuroscience; 1993 Jul; 55(2):531-44. PubMed ID: 7690912 [TBL] [Abstract][Full Text] [Related]
9. Augmentation by glycine and blockade by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) of responses to excitatory amino acids in slices of rat neocortex. Thomson AM Neuroscience; 1990; 39(1):69-79. PubMed ID: 1982468 [TBL] [Abstract][Full Text] [Related]
13. N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology. Verdoorn TA; Kleckner NW; Dingledine R Mol Pharmacol; 1989 Mar; 35(3):360-8. PubMed ID: 2564633 [TBL] [Abstract][Full Text] [Related]
14. Quisqualate agonists occlude kainate-induced current in cultured striatal neurons. Tse FW; Weiss S; MacVicar BA Neuroscience; 1991; 43(2-3):429-36. PubMed ID: 1681465 [TBL] [Abstract][Full Text] [Related]
15. Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Frandsen A; Schousboe A Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2590-4. PubMed ID: 1372982 [TBL] [Abstract][Full Text] [Related]
17. Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Koh JY; Choi DW Brain Res; 1991 May; 548(1-2):318-21. PubMed ID: 1678302 [TBL] [Abstract][Full Text] [Related]
18. Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate. Raigorodsky G; Urca G Eur J Pharmacol; 1990 Jun; 182(1):37-47. PubMed ID: 1976097 [TBL] [Abstract][Full Text] [Related]
19. GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated. Gallo V; Patrizio M; Levi G Glia; 1991; 4(3):245-55. PubMed ID: 1680100 [TBL] [Abstract][Full Text] [Related]
20. On concanavalin A-treated striatal neurons quisqualate clearly behaves as a partial agonist of a receptor fully activated by kainate. Charpentier N; Dumuis A; Sebben M; Bockaert J; Pin JP Eur J Pharmacol; 1990 Oct; 189(4-5):241-51. PubMed ID: 1980646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]