These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24064340)
1. Altered body composition and energy expenditure but normal glucose tolerance among humans with a long-chain fatty acid oxidation disorder. Gillingham MB; Harding CO; Schoeller DA; Matern D; Purnell JQ Am J Physiol Endocrinol Metab; 2013 Nov; 305(10):E1299-308. PubMed ID: 24064340 [TBL] [Abstract][Full Text] [Related]
2. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models. Diekman EF; van Weeghel M; Wanders RJ; Visser G; Houten SM FASEB J; 2014 Jul; 28(7):2891-900. PubMed ID: 24648546 [TBL] [Abstract][Full Text] [Related]
3. Long-chain fatty acid oxidation during early human development. Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636 [TBL] [Abstract][Full Text] [Related]
4. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Behrend AM; Harding CO; Shoemaker JD; Matern D; Sahn DJ; Elliot DL; Gillingham MB Mol Genet Metab; 2012 Jan; 105(1):110-5. PubMed ID: 22030098 [TBL] [Abstract][Full Text] [Related]
5. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast. Haglind CB; Nordenström A; Ask S; von Döbeln U; Gustafsson J; Stenlid MH J Inherit Metab Dis; 2015 Mar; 38(2):315-22. PubMed ID: 25141826 [TBL] [Abstract][Full Text] [Related]
6. Higher dietary protein intake preserves lean body mass, lowers liver lipid deposition, and maintains metabolic control in participants with long-chain fatty acid oxidation disorders. Gillingham MB; Elizondo G; Behrend A; Matern D; Schoeller DA; Harding CO; Purnell JQ J Inherit Metab Dis; 2019 Sep; 42(5):857-869. PubMed ID: 31295363 [TBL] [Abstract][Full Text] [Related]
7. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation. McCoin CS; Piccolo BD; Knotts TA; Matern D; Vockley J; Gillingham MB; Adams SH J Inherit Metab Dis; 2016 May; 39(3):399-408. PubMed ID: 26907176 [TBL] [Abstract][Full Text] [Related]
9. Effects of higher dietary protein intake on energy balance and metabolic control in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Gillingham MB; Purnell JQ; Jordan J; Stadler D; Haqq AM; Harding CO Mol Genet Metab; 2007 Jan; 90(1):64-9. PubMed ID: 16996288 [TBL] [Abstract][Full Text] [Related]
10. Normal rates of whole-body fat oxidation and gluconeogenesis after overnight fasting and moderate-intensity exercise in patients with medium-chain acyl-CoA dehydrogenase deficiency. Huidekoper HH; Ackermans MT; Koopman R; van Loon LJ; Sauerwein HP; Wijburg FA J Inherit Metab Dis; 2013 Sep; 36(5):831-40. PubMed ID: 22976767 [TBL] [Abstract][Full Text] [Related]
11. Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay. Li H; Fukuda S; Hasegawa Y; Kobayashi H; Purevsuren J; Mushimoto Y; Yamaguchi S Brain Dev; 2010 May; 32(5):362-70. PubMed ID: 19589653 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of 3-hydroxy-fatty acids in the culture medium of long-chain L-3-hydroxyacyl CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein-deficient skin fibroblasts: implications for medium chain triglyceride dietary treatment of LCHAD deficiency. Jones PM; Butt Y; Bennett MJ Pediatr Res; 2003 May; 53(5):783-7. PubMed ID: 12621125 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Tyni T; Paetau A; Strauss AW; Middleton B; Kivelä T Pediatr Res; 2004 Nov; 56(5):744-50. PubMed ID: 15347768 [TBL] [Abstract][Full Text] [Related]
14. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Djouadi F; Aubey F; Schlemmer D; Ruiter JP; Wanders RJ; Strauss AW; Bastin J Hum Mol Genet; 2005 Sep; 14(18):2695-703. PubMed ID: 16115821 [TBL] [Abstract][Full Text] [Related]
15. Diabetes and branched-chain amino acids: What is the link? Bloomgarden Z J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation. Tucci S; Herebian D; Sturm M; Seibt A; Spiekerkoetter U PLoS One; 2012; 7(9):e45429. PubMed ID: 23024820 [TBL] [Abstract][Full Text] [Related]
17. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency-studies on treatment effects and long-term outcomes in mouse models. Tucci S J Inherit Metab Dis; 2017 May; 40(3):317-323. PubMed ID: 28247148 [TBL] [Abstract][Full Text] [Related]
18. Influence of dietary fatty acid chain-length on metabolic tolerance in mouse models of inherited defects in mitochondrial fatty acid beta-oxidation. Schuler AM; Gower BA; Matern D; Rinaldo P; Wood PA Mol Genet Metab; 2004 Dec; 83(4):322-9. PubMed ID: 15589119 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders? Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182 [TBL] [Abstract][Full Text] [Related]