These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 24064860)

  • 41. The axes of rotation of the knee.
    Hollister AM; Jatana S; Singh AK; Sullivan WW; Lupichuk AG
    Clin Orthop Relat Res; 1993 May; (290):259-68. PubMed ID: 8472457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A reproducible method for studying three-dimensional knee kinematics.
    Hagemeister N; Parent G; Van de Putte M; St-Onge N; Duval N; de Guise J
    J Biomech; 2005 Sep; 38(9):1926-31. PubMed ID: 15996675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional joint range of motion measurements from skeletal coordinate data.
    Wei SH; McQuade KJ; Smidt GL
    J Orthop Sports Phys Ther; 1993 Dec; 18(6):687-91. PubMed ID: 8281183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [New method of describing the motion of the knee joint].
    Kurosawa H; Walker PS
    Nihon Seikeigeka Gakkai Zasshi; 1983 Nov; 57(11):1729-40. PubMed ID: 6676390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study.
    Seisler AR; Sheehan FT
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1333-41. PubMed ID: 17605365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. What portion of the soft tissue artefact requires compensation when estimating joint kinematics?
    Dumas R; Camomilla V; Bonci T; Chèze L; Cappozzo A
    J Biomech Eng; 2015 Jun; 137(6):064502. PubMed ID: 25867934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Instrumented implant for measuring tibiofemoral forces.
    Kaufman KR; Kovacevic N; Irby SE; Colwell CW
    J Biomech; 1996 May; 29(5):667-71. PubMed ID: 8707796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of imaging source and panel position uncertainties on the accuracy of 2D∕3D image registration of cranial images.
    Warmerdam G; Steininger P; Neuner M; Sharp G; Winey B
    Med Phys; 2012 Sep; 39(9):5547-56. PubMed ID: 22957621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of different calculations of three-dimensional joint kinematics from video-based system data.
    Chéze L
    J Biomech; 2000 Dec; 33(12):1695-9. PubMed ID: 11006395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is the instrumented-pointer method of calibrating anatomical landmarks in 3D motion analysis reliable?
    Tawy GF; Rowe P
    J Biomech; 2017 Feb; 53():205-209. PubMed ID: 28143654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On improving the accuracy of instrumented spatial linkage system.
    Liu W; Panjabi MM
    J Biomech; 1996 Oct; 29(10):1383-5. PubMed ID: 8884486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Novel Method to Estimate the Full Knee Joint Kinematics Using Low Cost IMU Sensors for Easy to Implement Low Cost Diagnostics.
    Versteyhe M; De Vroey H; Debrouwere F; Hallez H; Claeys K
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An anatomy-based coordinate system for the description of the kinematic displacements in the human knee.
    Pennock GR; Clark KJ
    J Biomech; 1990; 23(12):1209-18. PubMed ID: 2292600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measuring dynamic in-vivo elbow kinematics: description of technique and estimation of accuracy.
    McDonald CP; Moutzouros V; Bey MJ
    J Biomech Eng; 2012 Dec; 134(12):124502. PubMed ID: 23363209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Goniometer crosstalk compensation for knee joint applications.
    de Oliveira Sato T; Hansson GÅ; Coury HJ
    Sensors (Basel); 2010; 10(11):9994-10005. PubMed ID: 22163452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and validation of a novel 3D-printed wearable device for monitoring knee joint kinematics.
    Young C; Oliver ML; Gordon KD
    Med Eng Phys; 2021 Aug; 94():1-7. PubMed ID: 34303496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Helical Axis Data Visualization and Analysis of the Knee Joint Articulation.
    Millán Vaquero RM; Vais A; Dean Lynch S; Rzepecki J; Friese KI; Hurschler C; Wolter FE
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27367532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A finite helical axis as a landmark for kinematic reference of the knee.
    Hart RA; Mote CD; Skinner HB
    J Biomech Eng; 1991 May; 113(2):215-22. PubMed ID: 1875696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.