BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24064906)

  • 1. Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats.
    Olaleye MT; Crown OO; Akinmoladun AC; Akindahunsi AA
    Hum Exp Toxicol; 2014 Jun; 33(6):602-8. PubMed ID: 24064906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in Swiss albino mice.
    Sikder K; Kesh SB; Das N; Manna K; Dey S
    Food Funct; 2014 Jun; 5(6):1294-303. PubMed ID: 24745035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2).
    Alía M; Mateos R; Ramos S; Lecumberri E; Bravo L; Goya L
    Eur J Nutr; 2006 Feb; 45(1):19-28. PubMed ID: 15782287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells.
    Jiménez-Aliaga K; Bermejo-Bescós P; Benedí J; Martín-Aragón S
    Life Sci; 2011 Dec; 89(25-26):939-45. PubMed ID: 22008478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats.
    Umarani V; Muvvala S; Ramesh A; Lakshmi BV; Sravanthi N
    Toxicol Mech Methods; 2015 Feb; 25(2):143-9. PubMed ID: 25560802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress.
    López-Revuelta A; Sánchez-Gallego JI; Hernández-Hernández A; Sánchez-Yagüe J; Llanillo M
    Chem Biol Interact; 2006 May; 161(1):79-91. PubMed ID: 16620793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation.
    Prahalathan P; Kumar S; Raja B
    Metabolism; 2012 Aug; 61(8):1087-99. PubMed ID: 22386933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat.
    Aoi W; Niisato N; Miyazaki H; Marunaka Y
    Biochem Biophys Res Commun; 2004 Mar; 315(4):892-6. PubMed ID: 14985096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties.
    Omololu PA; Rocha JB; Kade IJ
    Exp Toxicol Pathol; 2011 Mar; 63(3):249-55. PubMed ID: 20122821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderation of hematological and plasma biochemical indices of sub-chronic salt-loaded rats by aqueous extract of the sclerotia of Pleurotus tuberregium (Fr) Sing's: implications for the reduction of cardiovascular risk.
    Ikewuchi JC; Ikewuchi CC; Ifeanacho MO; Igboh NM; Ijeh II
    J Ethnopharmacol; 2013 Nov; 150(2):466-76. PubMed ID: 24055467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. t-BOOH-induced oxidative damage in sickle red blood cells and the role of flavonoids.
    Cesquini M; Torsoni MA; Stoppa GR; Ogo SH
    Biomed Pharmacother; 2003; 57(3-4):124-9. PubMed ID: 12818473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidative Properties and Effect of Quercetin and Its Glycosylated Form (Rutin) on Acetylcholinesterase and Butyrylcholinesterase Activities.
    Ademosun AO; Oboh G; Bello F; Ayeni PO
    J Evid Based Complementary Altern Med; 2016 Oct; 21(4):NP11-7. PubMed ID: 26438716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats. Comparative study with verapamil.
    Galisteo M; García-Saura MF; Jiménez R; Villar IC; Wangensteen R; Zarzuelo A; Vargas F; Duarte J
    Planta Med; 2004 Apr; 70(4):334-41. PubMed ID: 15095149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm.
    Moretti E; Mazzi L; Terzuoli G; Bonechi C; Iacoponi F; Martini S; Rossi C; Collodel G
    Reprod Toxicol; 2012 Dec; 34(4):651-7. PubMed ID: 23064111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emblica officinalis exerts antihypertensive effect in a rat model of DOCA-salt-induced hypertension: role of (p) eNOS, NO and oxidative stress.
    Bhatia J; Tabassum F; Sharma AK; Bharti S; Golechha M; Joshi S; Sayeed Akhatar M; Srivastava AK; Arya DS
    Cardiovasc Toxicol; 2011 Sep; 11(3):272-9. PubMed ID: 21748534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats.
    Bopda OS; Longo F; Bella TN; Edzah PM; Taïwe GS; Bilanda DC; Tom EN; Kamtchouing P; Dimo T
    J Ethnopharmacol; 2014 Apr; 153(2):400-7. PubMed ID: 24583107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury.
    Lee CC; Shen SR; Lai YJ; Wu SC
    Food Funct; 2013 Apr; 4(5):794-802. PubMed ID: 23584161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects and mechanism of berberine on the hypertensive renal injury rats induced by enriched high fat-salt-fructose diet].
    Li HB; Cai Y; Qi CL; Lv JH
    Zhong Yao Cai; 2011 Mar; 34(3):412-5. PubMed ID: 21823461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet.
    Yamamoto Y; Oue E
    Biosci Biotechnol Biochem; 2006 Apr; 70(4):933-9. PubMed ID: 16636461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways.
    Oyagbemi AA; Omobowale TO; Ola-Davies OE; Asenuga ER; Ajibade TO; Adejumobi OA; Arojojoye OA; Afolabi JM; Ogunpolu BS; Falayi OO; Hassan FO; Ochigbo GO; Saba AB; Adedapo AA; Yakubu MA
    Biofactors; 2018 Sep; 44(5):465-479. PubMed ID: 30171731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.