These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24064964)

  • 41. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors.
    Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y
    Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recognition of single mismatched DNA using MutS-immobilized carbon nanotube field effect transistor devices.
    Kim S; Kim TG; Byon HR; Shin HJ; Ban C; Choi HC
    J Phys Chem B; 2009 Sep; 113(36):12164-8. PubMed ID: 19685907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanowire-transistor based ultra-sensitive DNA methylation detection.
    Maki WC; Mishra NN; Cameron EG; Filanoski B; Rastogi SK; Maki GK
    Biosens Bioelectron; 2008 Jan; 23(6):780-7. PubMed ID: 17936611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors.
    Kim A; Ah CS; Park CW; Yang JH; Kim T; Ahn CG; Park SH; Sung GY
    Biosens Bioelectron; 2010 Mar; 25(7):1767-73. PubMed ID: 20093001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetoresistive-based biosensors and biochips.
    Graham DL; Ferreira HA; Freitas PP
    Trends Biotechnol; 2004 Sep; 22(9):455-62. PubMed ID: 15331226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single embryo-coupled gate field effect transistor for elective single embryo transfer.
    Sakata T; Saito A; Mizuno J; Sugimoto H; Noguchi K; Kikuchi E; Inui H
    Anal Chem; 2013 Jul; 85(14):6633-8. PubMed ID: 23777300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor.
    Wenga G; Jacques E; Salaün AC; Rogel R; Pichon L; Geneste F
    Biosens Bioelectron; 2013 Feb; 40(1):141-6. PubMed ID: 22841443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors.
    Liao L; Zhang Z; Yan B; Zheng Z; Bao QL; Wu T; Li CM; Shen ZX; Zhang JX; Gong H; Li JC; Yu T
    Nanotechnology; 2009 Feb; 20(8):085203. PubMed ID: 19417443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation.
    Singh N; Yan C; Lee PS; Comini E
    Nanoscale; 2011 Apr; 3(4):1760-5. PubMed ID: 21347489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field effect sensors for nucleic Acid detection: recent advances and future perspectives.
    Veigas B; Fortunato E; Baptista PV
    Sensors (Basel); 2015 May; 15(5):10380-98. PubMed ID: 25946631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.
    Kisner A; Stockmann R; Jansen M; Yegin U; Offenhäusser A; Kubota LT; Mourzina Y
    Biosens Bioelectron; 2012 Jan; 31(1):157-63. PubMed ID: 22040747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor.
    Lin CH; Hsiao CY; Hung CH; Lo YR; Lee CC; Su CJ; Lin HC; Ko FH; Huang TY; Yang YS
    Chem Commun (Camb); 2008 Nov; (44):5749-51. PubMed ID: 19009069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA-based nanostructures for molecular sensing.
    Lee JB; Campolongo MJ; Kahn JS; Roh YH; Hartman MR; Luo D
    Nanoscale; 2010 Feb; 2(2):188-97. PubMed ID: 20644794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs.
    Lee HS; Kim KS; Kim CJ; Hahn SK; Jo MH
    Biosens Bioelectron; 2009 Feb; 24(6):1801-5. PubMed ID: 18835770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.
    Dasgupta S; Kruk R; Mechau N; Hahn H
    ACS Nano; 2011 Dec; 5(12):9628-38. PubMed ID: 22077094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection.
    Hammock ML; Sokolov AN; Stoltenberg RM; Naab BD; Bao Z
    ACS Nano; 2012 Apr; 6(4):3100-8. PubMed ID: 22397363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organizing protein-DNA hybrids as nanostructures with programmed functionalities.
    Teller C; Willner I
    Trends Biotechnol; 2010 Dec; 28(12):619-28. PubMed ID: 21035218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity.
    Li J; Zhang Y; To S; You L; Sun Y
    ACS Nano; 2011 Aug; 5(8):6661-8. PubMed ID: 21815637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose.
    Yuen JD; Walper SA; Melde BJ; Daniele MA; Stenger DA
    Sci Rep; 2017 Jan; 7():40867. PubMed ID: 28102316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous monitoring of protein adsorption kinetics using a quartz crystal microbalance and field-effect transistor integrated device.
    Goda T; Maeda Y; Miyahara Y
    Anal Chem; 2012 Sep; 84(17):7308-14. PubMed ID: 22861174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.