These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24065822)

  • 1. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis.
    Luk LY; Javier Ruiz-Pernía J; Dawson WM; Roca M; Loveridge EJ; Glowacki DR; Harvey JN; Mulholland AJ; Tuñón I; Moliner V; Allemann RK
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16344-9. PubMed ID: 24065822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.
    Wang Z; Antoniou D; Schwartz SD; Schramm VL
    Biochemistry; 2016 Jan; 55(1):157-66. PubMed ID: 26652185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases.
    Luk LY; Loveridge EJ; Allemann RK
    J Am Chem Soc; 2014 May; 136(19):6862-5. PubMed ID: 24779446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.
    Francis K; Sapienza PJ; Lee AL; Kohen A
    Biochemistry; 2016 Feb; 55(7):1100-6. PubMed ID: 26813442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations.
    Wang Z; Singh P; Czekster CM; Kohen A; Schramm VL
    J Am Chem Soc; 2014 Jun; 136(23):8333-41. PubMed ID: 24820793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and dissipation in enzyme catalysis.
    Boekelheide N; Salomón-Ferrer R; Miller TF
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16159-63. PubMed ID: 21930950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction.
    Stojković V; Perissinotti LL; Willmer D; Benkovic SJ; Kohen A
    J Am Chem Soc; 2012 Jan; 134(3):1738-45. PubMed ID: 22171795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Tey LH; Allemann RK
    J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein motions and dynamic effects in enzyme catalysis.
    Luk LY; Loveridge EJ; Allemann RK
    Phys Chem Chem Phys; 2015 Dec; 17(46):30817-27. PubMed ID: 25854702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a distal mutation on active site chemistry.
    Wang L; Tharp S; Selzer T; Benkovic SJ; Kohen A
    Biochemistry; 2006 Feb; 45(5):1383-92. PubMed ID: 16445280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Wong KF; Selzer T; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6807-12. PubMed ID: 15811945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that a 'dynamic knockout' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis.
    Loveridge EJ; Behiry EM; Guo J; Allemann RK
    Nat Chem; 2012 Mar; 4(4):292-7. PubMed ID: 22437714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of large-scale motions in catalysis by dihydrofolate reductase.
    Loveridge EJ; Tey LH; Behiry EM; Dawson WM; Evans RM; Whittaker SB; Günther UL; Williams C; Crump MP; Allemann RK
    J Am Chem Soc; 2011 Dec; 133(50):20561-70. PubMed ID: 22060818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase.
    Pu J; Ma S; Gao J; Truhlar DG
    J Phys Chem B; 2005 May; 109(18):8551-6. PubMed ID: 16852008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examinations of the Chemical Step in Enzyme Catalysis.
    Singh P; Islam Z; Kohen A
    Methods Enzymol; 2016; 577():287-318. PubMed ID: 27498642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.