BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24065834)

  • 1. Directed evolution to enhance thermostability of galacto-N-biose/lacto-N-biose I phosphorylase.
    Koyama Y; Hidaka M; Nishimoto M; Kitaoka M
    Protein Eng Des Sel; 2013 Nov; 26(11):755-61. PubMed ID: 24065834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: a large deformation of a TIM barrel scaffold.
    Hidaka M; Nishimoto M; Kitaoka M; Wakagi T; Shoun H; Fushinobu S
    J Biol Chem; 2009 Mar; 284(11):7273-83. PubMed ID: 19124470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.
    Nakajima M; Nihira T; Nishimoto M; Kitaoka M
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):465-71. PubMed ID: 18183385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211).
    Nishimoto M; Kitaoka M
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1587-91. PubMed ID: 17587697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6.
    Nakajima M; Kitaoka M
    Appl Environ Microbiol; 2008 Oct; 74(20):6333-7. PubMed ID: 18723650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum.
    Kitaoka M; Tian J; Nishimoto M
    Appl Environ Microbiol; 2005 Jun; 71(6):3158-62. PubMed ID: 15933016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Enhanced thermostability of Rhizopus chinensis lipase by error-prone PCR].
    Wang R; Yu X; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1753-64. PubMed ID: 24660623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating lactose phosphorylase enzymes by directed evolution of cellobiose phosphorylase.
    De Groeve MR; De Baere M; Hoflack L; Desmet T; Vandamme EJ; Soetaert W
    Protein Eng Des Sel; 2009 Jul; 22(7):393-9. PubMed ID: 19487233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L alpha-glucan phosphorylase.
    Yanase M; Takata H; Fujii K; Takaha T; Kuriki T
    Appl Environ Microbiol; 2005 Sep; 71(9):5433-9. PubMed ID: 16151135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR.
    Ben Mabrouk S; Ayadi DZ; Ben Hlima H; Bejar S
    J Biotechnol; 2013 Dec; 168(4):601-6. PubMed ID: 23994264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum.
    Nishimoto M; Kitaoka M
    Appl Environ Microbiol; 2007 Oct; 73(20):6444-9. PubMed ID: 17720833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming.
    Zhou C; Ye J; Xue Y; Ma Y
    Appl Environ Microbiol; 2015 Sep; 81(17):5714-23. PubMed ID: 26070675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale production of lacto-
    Nishimoto M
    Biosci Biotechnol Biochem; 2020 Jan; 84(1):17-24. PubMed ID: 31566084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the thermostability of a novel beta-agarase AgaB through directed evolution.
    Shi C; Lu X; Ma C; Ma Y; Fu X; Yu W
    Appl Biochem Biotechnol; 2008 Oct; 151(1):51-9. PubMed ID: 18785021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.
    Ye X; Zhang C; Zhang YH
    Mol Biosyst; 2012 Jun; 8(6):1815-23. PubMed ID: 22511238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-D-amino acid amidohydrolase by step-wise evolution.
    Zhang D; Zhu F; Fan W; Tao R; Yu H; Yang Y; Jiang W; Yang S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1361-71. PubMed ID: 21360152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering highly thermostable xylanase variants using an enhanced combinatorial library method.
    Hokanson CA; Cappuccilli G; Odineca T; Bozic M; Behnke CA; Mendez M; Coleman WJ; Crea R
    Protein Eng Des Sel; 2011 Aug; 24(8):597-605. PubMed ID: 21708791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library.
    Ito Y; Ikeuchi A; Imamura C
    Protein Eng Des Sel; 2013 Jan; 26(1):73-9. PubMed ID: 23091162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.