These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24065888)

  • 1. Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell-type markers.
    Chaudhuri AD; Yelamanchili SV; Fox HS
    Front Cell Neurosci; 2013; 7():160. PubMed ID: 24065888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment.
    de Planell-Saguer M; Rodicio MC; Mourelatos Z
    Nat Protoc; 2010 Jun; 5(6):1061-73. PubMed ID: 20539282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for conducting highly sensitive microRNA in situ hybridization and immunohistochemical analysis in pancreatic cancer.
    Sempere LF; Korc M
    Methods Mol Biol; 2013; 980():43-59. PubMed ID: 23359149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of small noncoding RNAs by in situ hybridization using probes of 2'-O-methyl RNA + LNA.
    Søe MJ; Dufva M; Holmstrøm K
    Methods Mol Biol; 2014; 1173():113-21. PubMed ID: 24920364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues.
    Shi Z; Johnson JJ; Stack MS
    J Oncol; 2012; 2012():903581. PubMed ID: 22654907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.
    Silahtaroglu AN; Nolting D; Dyrskjøt L; Berezikov E; Møller M; Tommerup N; Kauppinen S
    Nat Protoc; 2007; 2(10):2520-8. PubMed ID: 17947994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LNA-FISH for detection of microRNAs in frozen sections.
    Silahtaroglu AN
    Methods Mol Biol; 2010; 659():165-71. PubMed ID: 20809310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General principles and methods for routine automated microRNA in situ hybridization and double labeling with immunohistochemistry.
    Singh U; Keirstead N; Wolujczyk A; Odin M; Albassam M; Garrido R
    Biotech Histochem; 2014 May; 89(4):259-66. PubMed ID: 24106971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification.
    Qian X; Bauer RA; Xu HS; Lloyd RV
    Appl Immunohistochem Mol Morphol; 2001 Mar; 9(1):61-9. PubMed ID: 11277417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): a method for bacterial small RNA detection.
    Robertson KL; Vora GJ
    J Vis Exp; 2012 Jan; (59):e3655. PubMed ID: 22258228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ hybridization detection of microRNAs.
    Song R; Ro S; Yan W
    Methods Mol Biol; 2010; 629():287-94. PubMed ID: 20387156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of microRNA using
    Warford A; Rahman NS; Ribeiro DA; Uysal Onganer P
    Br J Biomed Sci; 2020 Jul; 77(3):135-141. PubMed ID: 32223721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples.
    Xi Y; Nakajima G; Gavin E; Morris CG; Kudo K; Hayashi K; Ju J
    RNA; 2007 Oct; 13(10):1668-74. PubMed ID: 17698639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes.
    Jørgensen S; Baker A; Møller S; Nielsen BS
    Methods; 2010 Dec; 52(4):375-81. PubMed ID: 20621190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain.
    Nelson PT; Baldwin DA; Kloosterman WP; Kauppinen S; Plasterk RH; Mourelatos Z
    RNA; 2006 Feb; 12(2):187-91. PubMed ID: 16373485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sRNA-FISH: versatile fluorescent in situ detection of small RNAs in plants.
    Huang K; Baldrich P; Meyers BC; Caplan JL
    Plant J; 2019 Apr; 98(2):359-369. PubMed ID: 30577085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MMISH: Multicolor microRNA
    Lei Z; van Mil A; Xiao J; Metz CHG; van Eeuwijk ECM; Doevendans PA; Sluijter JPG
    Biotechnol Rep (Amst); 2018 Jun; 18():e00255. PubMed ID: 29876304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ detection of aspergillus 18s ribosomal RNA Sequences using a terminally biotinylated locked nucleic acid (LNA) probe.
    Montone KT; Feldman MD
    Diagn Mol Pathol; 2009 Dec; 18(4):239-42. PubMed ID: 19861892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific miRNA Expression Profiling in Mouse Heart Sections Using In Situ Hybridization.
    Memi F; Tirziu D; Papangeli I
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets.
    Nuovo GJ; Elton TS; Nana-Sinkam P; Volinia S; Croce CM; Schmittgen TD
    Nat Protoc; 2009; 4(1):107-15. PubMed ID: 19131963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.