These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24066103)

  • 21. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.
    Schmaljohann H; Liechti F
    J Exp Biol; 2009 Nov; 212(Pt 22):3633-42. PubMed ID: 19880724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of the LunAero Open-Source Hardware Platform to Enhance the Accuracy and Precision of Traditional Nocturnal Migration Bird Counts.
    Honeycutt WT; Bridge ES
    Integr Comp Biol; 2022 Oct; 62(4):1085-1095. PubMed ID: 35648452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flight mode affects allometry of migration range in birds.
    Watanabe YY
    Ecol Lett; 2016 Aug; 19(8):907-14. PubMed ID: 27305867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative Visualizations Shed Light on Avian Nocturnal Migration.
    Shamoun-Baranes J; Farnsworth A; Aelterman B; Alves JA; Azijn K; Bernstein G; Branco S; Desmet P; Dokter AM; Horton K; Kelling S; Kelly JF; Leijnse H; Rong J; Sheldon D; Van den Broeck W; Van Den Meersche JK; Van Doren BM; van Gasteren H
    PLoS One; 2016; 11(8):e0160106. PubMed ID: 27557096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?
    Santos CD; Silva JP; Muñoz AR; Onrubia A; Wikelski M
    J Anim Ecol; 2020 Jun; 89(6):1317-1328. PubMed ID: 32144757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-band radar quantifies major disturbance of birds by fireworks in an urban area.
    Wayman JP; Atkinson G; Jahangir M; White D; Matthews TJ; Antoniou M; Reynolds SJ; Sadler JP
    Sci Rep; 2023 Jul; 13(1):12085. PubMed ID: 37495643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radar micro-Doppler signatures of drones and birds at K-band and W-band.
    Rahman S; Robertson DA
    Sci Rep; 2018 Nov; 8(1):17396. PubMed ID: 30478381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy supply during nocturnal endurance flight of migrant birds: effect of energy stores and flight behaviour.
    Jenni-Eiermann S; Liechti F; Briedis M; Rime Y; Jenni L
    Mov Ecol; 2024 May; 12(1):41. PubMed ID: 38816784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China.
    Feng HQ; Wu KM; Cheng DF; Guo YY
    Bull Entomol Res; 2003 Apr; 93(2):115-24. PubMed ID: 12699532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.
    Mirkovic D; Stepanian PM; Kelly JF; Chilson PB
    Sci Rep; 2016 Oct; 6():35637. PubMed ID: 27762292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes basin.
    Bonter DN; Gauthreaux SA; Donovan TM
    Conserv Biol; 2009 Apr; 23(2):440-8. PubMed ID: 18983598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying year-round nocturnal bird migration with a fluid dynamics model.
    Nussbaumer R; Bauer S; Benoit L; Mariethoz G; Liechti F; Schmid B
    J R Soc Interface; 2021 Jun; 18(179):20210194. PubMed ID: 34157892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina.
    Maggiora R; Saccani M; Milanesio D; Porporato M
    Sci Rep; 2019 Aug; 9(1):11964. PubMed ID: 31427653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic identification of bird targets with radar via patterns produced by wing flapping.
    Zaugg S; Saporta G; van Loon E; Schmaljohann H; Liechti F
    J R Soc Interface; 2008 Sep; 5(26):1041-53. PubMed ID: 18331979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.
    Sapir N; Horvitz N; Wikelski M; Avissar R; Mahrer Y; Nathan R
    Proc Biol Sci; 2011 Nov; 278(1723):3380-6. PubMed ID: 21471116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the migratory orientation program of birds: extending laboratory studies to study free-flying migrants in a natural setting.
    Thorup K; Holland RA; Tøttrup AP; Wikelski M
    Integr Comp Biol; 2010 Sep; 50(3):315-22. PubMed ID: 21558206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
    Dokter AM; Shamoun-Baranes J; Kemp MU; Tijm S; Holleman I
    PLoS One; 2013; 8(1):e52300. PubMed ID: 23300969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift Apus apus.
    Bäckman J; Alerstam T
    J Exp Biol; 2002 Apr; 205(Pt 7):905-10. PubMed ID: 11916987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.