BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24066306)

  • 1. An organic solvent and surfactant stable α-amylase from soybean seeds.
    Jaiswal N; Prakash O
    Acta Biochim Pol; 2013; 60(3):387-93. PubMed ID: 24066306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance.
    Kikani BA; Pandey S; Singh SP
    Bioprocess Biosyst Eng; 2013 May; 36(5):567-77. PubMed ID: 22961428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly efficient and thermostable α-amylase from soya bean seeds.
    Prakash O; Jaiswal N
    Biotechnol Appl Biochem; 2010 Dec; 57(3):105-10. PubMed ID: 20961290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of immobilized soybean lipoxygenase in selected organic solvent media.
    Vega M; Karboune S; Kermasha S
    Appl Biochem Biotechnol; 2005 Oct; 127(1):29-42. PubMed ID: 16186621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2.
    Shukla RJ; Singh SP
    Int J Biol Macromol; 2016 Apr; 85():208-16. PubMed ID: 26740465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study.
    Klapiszewski Ł; Zdarta J; Jesionowski T
    Colloids Surf B Biointerfaces; 2018 Feb; 162():90-97. PubMed ID: 29169053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.
    Guo H; Tang Y; Yu Y; Xue L; Qian JQ
    Int J Biol Macromol; 2016 Jun; 87():537-44. PubMed ID: 26959172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of organic solvents on peroxidases from rice and horseradish: prospects for enzyme based applications.
    Singh P; Prakash R; Shah K
    Talanta; 2012 Aug; 97():204-10. PubMed ID: 22841068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation and stabilization of enzymes entrapped into reversed micelles. Studies on hydrolyzing enzymes--protease and alpha-amylase.
    Gajjar L; Dubey RS; Srivastava RC
    Appl Biochem Biotechnol; 1994 Nov; 49(2):101-12. PubMed ID: 7529477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-stabilized small hydrogel particles in oil: hosts for remarkable activation of enzymes in organic solvents.
    Das D; Roy S; Debnath S; Das PK
    Chemistry; 2010 Apr; 16(16):4911-22. PubMed ID: 20229535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean hull peroxidase immobilization on macroporous glycidyl methacrylates with different surface characteristics.
    Prokopijevic M; Prodanovic O; Spasojevic D; Stojanovic Z; Radotic K; Prodanovic R
    Bioprocess Biosyst Eng; 2014 May; 37(5):799-804. PubMed ID: 24061564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of water miscible organic solvents on alpha-chymotrypsin in solution and immobilized on Eupergit CM.
    Olofsson L; Söderberg P; Nicholls IA
    Biotechnol Lett; 2006 Jun; 28(12):929-35. PubMed ID: 16775656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed and random immobilization of subtilisin on functionalized membranes: activity determination in aqueous and organic media.
    Viswanath S; Wang J; Bachas LG; Butterfield DA; Bhattacharyya D
    Biotechnol Bioeng; 1998 Dec; 60(5):608-16. PubMed ID: 10099469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression and characterization of an organic-solvent-tolerant α-amylase from Exiguobacterium sp. DAU5.
    Chang J; Lee YS; Fang SJ; Park IH; Choi YL
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1870-83. PubMed ID: 23344941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of α-amylase enzyme on a protein @metal-organic framework nanocomposite: A new strategy to develop the reusability and stability of the enzyme.
    Atiroğlu V; Atiroğlu A; Özacar M
    Food Chem; 2021 Jul; 349():129127. PubMed ID: 33561794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies.
    Karra-Châabouni M; Bouaziz I; Boufi S; Botelho do Rego AM; Gargouri Y
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):168-77. PubMed ID: 18684596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.
    Pandey S; Singh SP
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1747-57. PubMed ID: 22328257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of phenolic content and urease and alpha-amylase inhibitory activities of methanolic extract of Rumex acetosella roots and its sub-fractions in different solvents.
    Ahmed D; Mughal QM; Younas S; Ikram M
    Pak J Pharm Sci; 2013 May; 26(3):553-9. PubMed ID: 23625429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica.
    Yang H; Liu L; Li J; Du G; Chen J
    Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.