BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24066708)

  • 1. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80.
    Al-Naseri A; Bowman JP; Wilson R; Nilsson RE; Britz ML
    J Proteome Res; 2013 Nov; 12(11):5313-22. PubMed ID: 24066708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase.
    Hussain MA; Knight MI; Britz ML
    J Appl Microbiol; 2009 Mar; 106(3):764-73. PubMed ID: 19302099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of α-phosphoglucomutase and phosphoglucose isomerase activities at the branching point between sugar catabolism and anabolism in Lactobacillus casei.
    Sanfélix-Haywood N; Coll-Marqués JM; Yebra MJ
    J Appl Microbiol; 2011 Aug; 111(2):433-42. PubMed ID: 21605291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of Lactobacillus casei GCRL163 cell-free extracts reveals a SecB homolog and other biomarkers of prolonged heat stress.
    Adu KT; Wilson R; Nichols DS; Baker AL; Bowman JP; Britz ML
    PLoS One; 2018; 13(10):e0206317. PubMed ID: 30359441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of an acid-tolerant, persistent Cheddar cheese isolate, Lacticaseibacillus paracasei GCRL163.
    Shah SS; Al-Naseri A; Rouch D; Bowman JP; Wilson R; Baker AL; Britz ML
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34555172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome.
    Siciliano RA; Pannella G; Lippolis R; Ricciardi A; Mazzeo MF; Zotta T
    Int J Food Microbiol; 2019 Jun; 298():51-62. PubMed ID: 30925356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.
    Lee B; Tachon S; Eigenheer RA; Phinney BS; Marco ML
    J Proteome Res; 2015 Aug; 14(8):3136-47. PubMed ID: 26148687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tween 80 and respiratory growth affect metabolite production and membrane fatty acids in Lactobacillus casei N87.
    Zotta T; Tabanelli G; Montanari C; Ianniello RG; Parente E; Gardini F; Ricciardi A
    J Appl Microbiol; 2017 Mar; 122(3):759-769. PubMed ID: 27981716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.
    Tsai YK; Chen HW; Lo TC; Lin TH
    Microbiology (Reading); 2009 Mar; 155(Pt 3):751-760. PubMed ID: 19246746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.
    O'Sullivan DJ; McSweeney PLH; Cotter PD; Giblin L; Sheehan JJ
    J Dairy Sci; 2016 Apr; 99(4):2625-2640. PubMed ID: 26805985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction.
    Yu J; Hui W; Cao C; Pan L; Zhang H; Zhang W
    J Proteome Res; 2018 Mar; 17(3):1290-1299. PubMed ID: 29405720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.
    Wu Q; Shah NP
    Food Microbiol; 2017 Apr; 62():178-187. PubMed ID: 27889146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334.
    Mortera P; Pudlik A; Magni C; Alarcón S; Lolkema JS
    Appl Environ Microbiol; 2013 Aug; 79(15):4603-12. PubMed ID: 23709502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.
    Bidart GN; Rodríguez-Díaz J; Pérez-Martínez G; Yebra MJ
    Sci Rep; 2018 May; 8(1):7152. PubMed ID: 29740087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactobacillus casei metabolic potential to utilize citrate as an energy source in ripening cheese: a bioinformatics approach.
    Díaz-Muñiz I; Banavara DS; Budinich MF; Rankin SA; Dudley EG; Steele JL
    J Appl Microbiol; 2006 Oct; 101(4):872-82. PubMed ID: 16968299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei.
    Gosalbes MJ; Esteban CD; Galán JL; Pérez-Martínez G
    Appl Environ Microbiol; 2000 Nov; 66(11):4822-8. PubMed ID: 11055930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469].
    Benito de Cárdenas IL; Medina R; Oliver G
    Rev Argent Microbiol; 1992; 24(3-4):136-44. PubMed ID: 1302866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in Inner Mongolia of China.
    Wu R; Wang W; Yu D; Zhang W; Li Y; Sun Z; Wu J; Meng H; Zhang H
    Mol Cell Proteomics; 2009 Oct; 8(10):2321-38. PubMed ID: 19508964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk.
    Wang J; Wu R; Zhang W; Sun Z; Zhao W; Zhang H
    J Dairy Sci; 2013 Sep; 96(9):5603-24. PubMed ID: 23871367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.