These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 24066803)
1. Effect of select organic compounds on perchlorate formation at boron-doped diamond film anodes. Donaghue A; Chaplin BP Environ Sci Technol; 2013; 47(21):12391-9. PubMed ID: 24066803 [TBL] [Abstract][Full Text] [Related]
2. Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti Wang L; Wang Y; Sui Y; Lu J; Hu B; Huang Q Sci Rep; 2022 Sep; 12(1):15880. PubMed ID: 36151096 [TBL] [Abstract][Full Text] [Related]
3. Interpretation of high perchlorate generated during electrochemical disinfection in presence of chloride at BDD anodes. Long Y; Li H; Jin H; Ni J Chemosphere; 2021 Dec; 284():131418. PubMed ID: 34323797 [TBL] [Abstract][Full Text] [Related]
4. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Zhu X; Tong M; Shi S; Zhao H; Ni J Environ Sci Technol; 2008 Jul; 42(13):4914-20. PubMed ID: 18678026 [TBL] [Abstract][Full Text] [Related]
5. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes. Dbira S; Bensalah N; Bedoui A; Cañizares P; Rodrigo MA Environ Sci Pollut Res Int; 2015 Apr; 22(8):6176-84. PubMed ID: 25399531 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products. Cavalcanti EB; Garcia-Segura S; Centellas F; Brillas E Water Res; 2013 Apr; 47(5):1803-15. PubMed ID: 23351432 [TBL] [Abstract][Full Text] [Related]
7. Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes. Jiang H; Dang C; Liu W; Wang T Chemosphere; 2020 Jun; 248():126033. PubMed ID: 32004882 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of perchlorate formation on boron-doped diamond film anodes. Azizi O; Hubler D; Schrader G; Farrell J; Chaplin BP Environ Sci Technol; 2011 Dec; 45(24):10582-90. PubMed ID: 22029642 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Scialdone O; Randazzo S; Galia A; Silvestri G Water Res; 2009 May; 43(8):2260-72. PubMed ID: 19269668 [TBL] [Abstract][Full Text] [Related]
10. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation. Gayen P; Chaplin BP ACS Appl Mater Interfaces; 2017 Aug; 9(33):27638-27648. PubMed ID: 28749130 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical combustion of herbicide mecoprop in aqueous medium using a flow reactor with a boron-doped diamond anode. Flox C; Cabot PL; Centellas F; Garrido JA; Rodríguez RM; Arias C; Brillas E Chemosphere; 2006 Aug; 64(6):892-902. PubMed ID: 16516266 [TBL] [Abstract][Full Text] [Related]
12. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO Xing X; Ni J; Zhu X; Jiang Y; Xia J Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the electrochemical oxidation of the herbicide tebuthiuron using boron-doped diamond electrodes. Alves SA; Ferreira TC; Sabatini NS; Trientini AC; Migliorini FL; Baldan MR; Ferreira NG; Lanza MR Chemosphere; 2012 Jun; 88(2):155-60. PubMed ID: 22406242 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Cañizares P; Lobato J; Paz R; Rodrigo MA; Sáez C Water Res; 2005 Jul; 39(12):2687-703. PubMed ID: 15979123 [TBL] [Abstract][Full Text] [Related]
15. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes. Marcionilio SM; Alves GM; E Silva RB; Marques PJ; Maia PD; Neto BA; Linares JJ Environ Sci Pollut Res Int; 2016 Oct; 23(19):19084-95. PubMed ID: 27343078 [TBL] [Abstract][Full Text] [Related]
16. Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode. Garcia-Segura S; Brillas E Water Res; 2011 Apr; 45(9):2975-84. PubMed ID: 21477836 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical oxidation of N-nitrosodimethylamine with boron-doped diamond film electrodes. Chaplin BP; Schrader G; Farrell J Environ Sci Technol; 2009 Nov; 43(21):8302-7. PubMed ID: 19924960 [TBL] [Abstract][Full Text] [Related]
18. Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. Lin Z; Yao W; Wang Y; Yu G; Deng S; Huang J; Wang B Water Res; 2016 Jan; 88():691-702. PubMed ID: 26580085 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical inactivation of triclosan with boron doped diamond film electrodes. Wang J; Farrell J Environ Sci Technol; 2004 Oct; 38(19):5232-7. PubMed ID: 15506222 [TBL] [Abstract][Full Text] [Related]
20. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes. Jiang Y; Zhu X; Li H; Ni J Chemosphere; 2010 Feb; 78(9):1093-9. PubMed ID: 20060999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]