These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24066939)

  • 1. Impaired renal autoregulation in susceptible models of renal disease.
    Murphy S; Williams JM
    Curr Vasc Pharmacol; 2014; 12(6):859-66. PubMed ID: 24066939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of renal blood flow autoregulation.
    Burke M; Pabbidi MR; Farley J; Roman RJ
    Curr Vasc Pharmacol; 2014; 12(6):845-58. PubMed ID: 24066938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging Impairs Renal Autoregulation in Mice.
    Wei J; Zhu J; Zhang J; Jiang S; Qu L; Wang L; Buggs J; Tan X; Cheng F; Liu R
    Hypertension; 2020 Feb; 75(2):405-412. PubMed ID: 31838907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myogenic mechanisms in the kidney.
    Aukland K
    J Hypertens Suppl; 1989 Sep; 7(4):S71-6; discussion S77. PubMed ID: 2681599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury.
    Fan L; Gao W; Nguyen BV; Jefferson JR; Liu Y; Fan F; Roman RJ
    Am J Physiol Renal Physiol; 2020 Oct; 319(4):F624-F635. PubMed ID: 32830539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms.
    Loutzenhiser R; Griffin K; Williamson G; Bidani A
    Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1153-67. PubMed ID: 16603656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal autoregulation: models combining tubuloglomerular feedback and myogenic response.
    Aukland K; Oien AH
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F768-83. PubMed ID: 3565585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of dynamics in renal autoregulation using volterra models.
    Hacioğlu R; Williamson GA; Abu-Amarah I; Griffin KA; Bidani AK
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2166-76. PubMed ID: 17073321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of myogenic autoregulation in cyclosporine nephrotoxicity in the rat.
    Kaskel FJ; Deverajan P; Birzgalis A; Moore LC
    Ren Physiol Biochem; 1989; 12(4):250-9. PubMed ID: 2616886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide and renal autoregulation.
    Just A
    Kidney Blood Press Res; 1997; 20(3):201-4. PubMed ID: 9293443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myogenic vasoconstriction in the rat kidney elicited by reducing perirenal pressure.
    Clausen G; Oien AH; Aukland K
    Acta Physiol Scand; 1992 Mar; 144(3):277-90. PubMed ID: 1585812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the interaction between tubuloglomerular feedback and myogenic mechanisms in the control of glomerular mechanics.
    Richfield O; Cortez R; Navar LG
    Front Physiol; 2024; 15():1410764. PubMed ID: 38966231
    [No Abstract]   [Full Text] [Related]  

  • 14. Ascending myogenic autoregulation: interactions between tubuloglomerular feedback and myogenic mechanisms.
    Moore LC; Rich A; Casellas D
    Bull Math Biol; 1994 May; 56(3):391-410. PubMed ID: 8087076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling renal autoregulation in a hemodynamic, first-trimester gestational model.
    van Ochten M; Westerhof BE; Spaanderman MEA; Antonius TAJ; van Drongelen J
    Physiol Rep; 2022 Oct; 10(19):e15484. PubMed ID: 36200318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension.
    Hayashi K; Epstein M; Saruta T
    J Hypertens; 1996 Dec; 14(12):1387-401. PubMed ID: 8986920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P2 receptors in renal autoregulation.
    Guan Z; Fellner RC; Van Beusecum J; Inscho EW
    Curr Vasc Pharmacol; 2014; 12(6):818-28. PubMed ID: 24066935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic basis of the impaired renal myogenic response in FHH rats.
    Burke M; Pabbidi M; Fan F; Ge Y; Liu R; Williams JM; Sarkis A; Lazar J; Jacob HJ; Roman RJ
    Am J Physiol Renal Physiol; 2013 Mar; 304(5):F565-77. PubMed ID: 23220727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired myogenic autoregulation in kidneys of Brown Norway rats.
    Wang X; Ajikobi DO; Salevsky FC; Cupples WA
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F962-9. PubMed ID: 10836984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.