These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24067104)

  • 1. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers-condensers cooled by seawater.
    Trueba A; Otero FM; González JA; Vega LM; García S
    Biofouling; 2013; 29(9):1139-51. PubMed ID: 24067104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.
    Trueba A; García S; Otero FM
    Biofouling; 2014 Jan; 30(1):95-103. PubMed ID: 24266611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.
    García S; Trueba A; Vega LM; Madariaga E
    Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of different antifouling treatments for seawater cooling systems.
    López-Galindo C; Casanueva JF; Nebot E
    Biofouling; 2010 Nov; 26(8):923-30. PubMed ID: 21038152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(1):19-26. PubMed ID: 25567299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(6):527-34. PubMed ID: 26222187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent.
    Eguía E; Trueba A; Girón A; Río-Calonge B; Otero F; Bielva C
    Biofouling; 2007; 23(3-4):231-47. PubMed ID: 17653933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine.
    Saravanan P; Nancharaiah YV; Venugopalan VP; Rao TS; Jayachandran S
    Biofouling; 2006; 22(5-6):371-81. PubMed ID: 17178570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined monitor for direct and indirect measurement of biofouling.
    Eguía E; Trueba A; Río-Calonge B; Girón A; Amieva JJ; Bielva C
    Biofouling; 2008; 24(2):75-86. PubMed ID: 18167032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of blood on the antiviral activity of sodium hypochlorite, a phenolic, and a quaternary ammonium compound.
    Weber DJ; Barbee SL; Sobsey MD; Rutala WA
    Infect Control Hosp Epidemiol; 1999 Dec; 20(12):821-7. PubMed ID: 10614606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects.
    García S; Boullosa-Falces D; Sanz DS; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2024; 40(5-6):366-376. PubMed ID: 38855912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the bacterial viability of chlorine- and quaternary ammonium compounds-treated Lactobacillus cells via a multi-method approach.
    Olszewska MA; Nynca A; Białobrzewski I; Kocot AM; Łaguna J
    J Appl Microbiol; 2019 Apr; 126(4):1070-1080. PubMed ID: 30664312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems.
    Boullosa-Falces D; García S; Sanz D; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2020 Jan; 36(1):73-85. PubMed ID: 31985280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants.
    Wong HS; Townsend KM; Fenwick SG; Maker G; Trengove RD; O'Handley RM
    Biofouling; 2010 Oct; 26(7):859-64. PubMed ID: 20938850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mechanical stress on biofilms challenged by different chemicals.
    Simões M; Pereira MO; Vieira MJ
    Water Res; 2005 Dec; 39(20):5142-52. PubMed ID: 16289205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of biofilm cell removal and killing and biocide efficacy using the microtiter plate test.
    Shakeri S; Kermanshahi RK; Moghaddam MM; Emtiazi G
    Biofouling; 2007; 23(1-2):79-86. PubMed ID: 17453732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.
    Casanueva JF; Sánchez J; García-Morales JL; Casanueva-Robles T; López JA; Portela JR; Nebot E; Sales D
    Water Sci Technol; 2003; 47(5):99-104. PubMed ID: 12701913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation and removal of Bacillus cereus by sanitizer and detergent.
    Peng JS; Tsai WC; Chou CC
    Int J Food Microbiol; 2002 Jul; 77(1-2):11-8. PubMed ID: 12076028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly non-biocide-release coatings for marine biofouling prevention.
    Silva ER; Ferreira O; Ramalho PA; Azevedo NF; Bayón R; Igartua A; Bordado JC; Calhorda MJ
    Sci Total Environ; 2019 Feb; 650(Pt 2):2499-2511. PubMed ID: 30293004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of biocide treatments on the biofilm community in Domitilla's catacombs in Rome.
    Urzì C; De Leo F; Krakova L; Pangallo D; Bruno L
    Sci Total Environ; 2016 Dec; 572():252-262. PubMed ID: 27501424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.