These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 24067444)

  • 1. Can biowarfare agents be defeated with light?
    Vatansever F; Ferraresi C; de Sousa MV; Yin R; Rineh A; Sharma SK; Hamblin MR
    Virulence; 2013 Nov; 4(8):796-825. PubMed ID: 24067444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System.
    Kim DK; Kang DH
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light.
    Tomb RM; White TA; Coia JE; Anderson JG; MacGregor SJ; Maclean M
    Photochem Photobiol; 2018 May; 94(3):445-458. PubMed ID: 29350751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiation of antimicrobial photodynamic inactivation by inorganic salts.
    Hamblin MR
    Expert Rev Anti Infect Ther; 2017 Nov; 15(11):1059-1069. PubMed ID: 29084463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic treatment: a new efficient alternative for surface sanitation.
    Brovko L
    Adv Food Nutr Res; 2010; 61():119-47. PubMed ID: 21092903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue light (470 nm) effectively inhibits bacterial and fungal growth.
    De Lucca AJ; Carter-Wientjes C; Williams KA; Bhatnagar D
    Lett Appl Microbiol; 2012 Dec; 55(6):460-6. PubMed ID: 23009190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances on the application of UV-LED technology for microbial inactivation: Progress and mechanism.
    Kebbi Y; Muhammad AI; Sant'Ana AS; do Prado-Silva L; Liu D; Ding T
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):3501-3527. PubMed ID: 33337035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV light inactivation of bacterial biothreat agents.
    Rose LJ; O'Connell H
    Appl Environ Microbiol; 2009 May; 75(9):2987-90. PubMed ID: 19270145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface disinfection by exposure to germicidal UV light.
    Katara G; Hemvani N; Chitnis S; Chitnis V; Chitnis DS
    Indian J Med Microbiol; 2008; 26(3):241-2. PubMed ID: 18695322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.
    Huang YY; Choi H; Kushida Y; Bhayana B; Wang Y; Hamblin MR
    Antimicrob Agents Chemother; 2016 Sep; 60(9):5445-53. PubMed ID: 27381399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation kinetics and lethal dose analysis of antimicrobial blue light and photodynamic therapy.
    Sabino CP; Wainwright M; Dos Anjos C; Sellera FP; Baptista MS; Lincopan N; Ribeiro MS
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():186-191. PubMed ID: 31430576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two pathogen reduction technologies--methylene blue plus light and shortwave ultraviolet light--effectively inactivate hepatitis C virus in blood products.
    Steinmann E; Gravemann U; Friesland M; Doerrbecker J; Müller TH; Pietschmann T; Seltsam A
    Transfusion; 2013 May; 53(5):1010-8. PubMed ID: 22905868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase.
    Rodrigues-Silva C; Miranda SM; Lopes FVS; Silva M; Dezotti M; Silva AMT; Faria JL; Boaventura RAR; Vilar VJP; Pinto E
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6372-6381. PubMed ID: 27357708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light inactivation of bacteria and fungi by modified titanium dioxide.
    Mitoraj D; Jańczyk A; Strus M; Kisch H; Stochel G; Heczko PB; Macyk W
    Photochem Photobiol Sci; 2007 Jun; 6(6):642-8. PubMed ID: 17549266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense.
    Coohill TP; Sagripanti JL
    Photochem Photobiol; 2008; 84(5):1084-90. PubMed ID: 18627518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated Inactivation Efficacy of a Pulsed UVC Light-Emitting Diode System for Foodborne Pathogens on Selective Media and Food Surfaces.
    Kim DK; Kang DH
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes.
    Demidova TN; Hamblin MR
    Appl Environ Microbiol; 2005 Nov; 71(11):6918-25. PubMed ID: 16269726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrahydroporphyrin-tetratosylate (THPTS)-based photodynamic inactivation of critical multidrug-resistant bacteria in vitro.
    Ziganshyna S; Guttenberger A; Lippmann N; Schulz S; Bercker S; Kahnt A; Rüffer T; Voigt A; Gerlach K; Werdehausen R
    Int J Antimicrob Agents; 2020 Jun; 55(6):105976. PubMed ID: 32325201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control.
    Maclean M; McKenzie K; Anderson JG; Gettinby G; MacGregor SJ
    J Hosp Infect; 2014 Sep; 88(1):1-11. PubMed ID: 25066049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.