These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24067631)

  • 1. Photothermal lens spectrometry measurements in highly turbid media.
    Marcano A; Basaldua I; Villette A; Edziah R; Liu J; Ziane O; Melikechi N
    Appl Spectrosc; 2013 Sep; 67(9):1013-8. PubMed ID: 24067631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light.
    Zhao Z; Myllylä R
    Appl Opt; 2005 Dec; 44(36):7845-52. PubMed ID: 16381536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter.
    Guo X; Wood MF; Vitkin IA
    J Biomed Opt; 2006; 11(4):041105. PubMed ID: 16965133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering noise estimation of range-gated imaging system in turbid condition.
    Tan C; Seet G; Sluzek A; Wang X; Yuen CT; Fam CY; Wong HY
    Opt Express; 2010 Sep; 18(20):21147-54. PubMed ID: 20941011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multi-mode polarization modulation spectrometer: part 1: simultaneous detection of absorption, turbidity, and optical activity.
    Arvinte T; Bui TT; Dahab AA; Demeule B; Drake AF; Elhag D; King P
    Anal Biochem; 2004 Sep; 332(1):46-57. PubMed ID: 15301948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in thermal lens spectrometry and its applications in microscale analytical devices.
    Liu M; Franko M
    Crit Rev Anal Chem; 2014; 44(4):328-53. PubMed ID: 25391720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media.
    Pifferi A; Torricelli A; Taroni P; Comelli D; Bassi A; Cubeddu R
    Rev Sci Instrum; 2007 May; 78(5):053103. PubMed ID: 17552808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic algorithm optimization for focusing through turbid media in noisy environments.
    Conkey DB; Brown AN; Caravaca-Aguirre AM; Piestun R
    Opt Express; 2012 Feb; 20(5):4840-9. PubMed ID: 22418290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Do Trong NN; Aernouts B; Erkinbaev C; De Baerdemaeker J; Nicolaï B; Saeys W
    Opt Express; 2013 Dec; 21(26):32630-42. PubMed ID: 24514857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier domain multispectral multiple scattering low coherence interferometry.
    Matthews TE; Giacomelli MG; Brown WJ; Wax A
    Appl Opt; 2013 Dec; 52(34):8220-8. PubMed ID: 24513821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation.
    McDowell EJ; Cui M; Vellekoop IM; Senekerimyan V; Yaqoob Z; Yang C
    J Biomed Opt; 2010; 15(2):025004. PubMed ID: 20459245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved reflectance spectroscopy in turbid tissues.
    Jacques SL
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1155-61. PubMed ID: 2606489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium.
    Choi Y; Hillman TR; Choi W; Lue N; Dasari RR; So PT; Choi W; Yaqoob Z
    Phys Rev Lett; 2013 Dec; 111(24):243901. PubMed ID: 24483661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optical Configuration of Crossed-Beam Photothermal Lens Spectrometer Operating at High Flow Velocities and Its Application for Cysteine Determination in Human Serum and Saliva.
    Yoosefian J; Alizadeh N
    Anal Chem; 2018 Jul; 90(13):8227-8233. PubMed ID: 29869876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions.
    Patapoff TW; Tani TH; Cromwell ME
    Anal Biochem; 1999 Jun; 270(2):338-40. PubMed ID: 10334855
    [No Abstract]   [Full Text] [Related]  

  • 19. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easy-use and low-cost fiber-based two-color dynamic light-scattering apparatus.
    Lederer A; Schöpe HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031401. PubMed ID: 22587095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.