These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24067634)

  • 1. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.
    Kumar P; Kumar J; Prakash O; Saini VK; Dixit SK; Nakhe SV
    Appl Spectrosc; 2013 Sep; 67(9):1036-41. PubMed ID: 24067634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.
    Saini VK; Kumar P; Dixit SK; Nakhe SV
    Appl Opt; 2014 Jul; 53(19):4320-6. PubMed ID: 25089996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.
    Saini VK; Kumar P; Dixit SK; Nakhe SV
    Appl Opt; 2015 Feb; 54(4):595-602. PubMed ID: 25967764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies.
    Saini VK; Kumar P; Sarangpani KK; Dixit SK; Nakhe SV
    Rev Sci Instrum; 2017 Sep; 88(9):093101. PubMed ID: 28964210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser stabilization to neutral Yb in a discharge with polarization-enhanced frequency modulation spectroscopy.
    Blūms V; Scarabel J; Shimizu K; Ghadimi M; Connell SC; Händel S; Norton BG; Bridge EM; Kielpinski D; Lobino M; Streed EW
    Rev Sci Instrum; 2020 Dec; 91(12):123002. PubMed ID: 33379967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogalvanic resonance detection of pulsed dye laser atomic absorption.
    Nippoldt MA; Green RB
    Appl Opt; 1981 Sep; 20(18):3206-10. PubMed ID: 20333122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective photoionization of lithium isotopes in a hollow cathode lamp: a feasibility study for a laser ion source and detector.
    Saini VK; Kak A; Dixit SK
    Appl Opt; 2018 Aug; 57(23):6808-6816. PubMed ID: 30129630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First results on Ge resonant laser photoionization in hollow cathode lamp.
    Scarpa D; Barzakh A; Fedorov D; Andrighetto A; Mariotti E; Nicolosi P; Tomaselli A
    Rev Sci Instrum; 2016 Feb; 87(2):02B708. PubMed ID: 26932071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [High current microsecond pulsed hollow cathode lamp excited inductively coupled plasma ionic fluorescence spectrometry of Eu, Yb, Ca, Sr and Ba with an extended-sleeve torch].
    Zhang SY; Huang BL; Gong ZB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):632-6. PubMed ID: 12945316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow linewidth Yb-doped fiber laser at 1120 nm.
    Xiaojuan L; Shenggui F; Liping G; Kezhen H
    Appl Opt; 2013 Mar; 52(9):1829-31. PubMed ID: 23518724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of Yb(III) to Yb(II) by two-color two-photon excitation.
    Nakashima N; Yamanaka K; Yatsuhashi T
    J Phys Chem A; 2013 Sep; 117(35):8352-9. PubMed ID: 23968280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogalvanic effect in a hollow cathode discharge with nonlaser sources.
    Apel CT; Keller RA; Zalewski EF; Engleman R
    Appl Opt; 1982 Apr; 21(8):1465-7. PubMed ID: 20389874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the optogalvanic effect and the uranium atlas for wavelength calibration of pulsed lasers.
    Dovichi NJ; Moore DS; Keller RA
    Appl Opt; 1982 Apr; 21(8):1468-73. PubMed ID: 20389875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp.
    Kim JI; Park CY; Yeom JY; Kim EB; Yoon TH
    Opt Lett; 2003 Feb; 28(4):245-7. PubMed ID: 12653360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogalvanic effect as a detector for intracavity atomic absorption in a cw dye laser.
    Zalewski EF; Keller RA; Apel CT
    Appl Opt; 1981 May; 20(9):1584-7. PubMed ID: 20309353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled optical resonance laser locking.
    Burd SC; du Toit PJ; Uys H
    Opt Express; 2014 Oct; 22(21):25043-52. PubMed ID: 25401537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.
    Saini VK
    Appl Opt; 2013 Jun; 52(18):4404-11. PubMed ID: 23842186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency locking of laser diode using metallic vapor optogalvanic spectrum: Ui.
    David E; Gagne JM
    Appl Opt; 1990 Oct; 29(30):4489-93. PubMed ID: 20577414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency and amplitude modulation of a cw-dye laser for measuring hyperfine frequency separations in optogalvanic spectra of
    Kumar PVK; Srikanth G
    Appl Opt; 2021 Apr; 60(12):3430-3439. PubMed ID: 33983248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.