These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 24067638)
1. Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis. Caceres JO; Moncayo S; Rosales JD; de Villena FJ; Alvira FC; Bilmes GM Appl Spectrosc; 2013 Sep; 67(9):1064-72. PubMed ID: 24067638 [TBL] [Abstract][Full Text] [Related]
2. Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Marcos-Martinez D; Ayala JA; Izquierdo-Hornillos RC; de Villena FJ; Caceres JO Talanta; 2011 May; 84(3):730-7. PubMed ID: 21482275 [TBL] [Abstract][Full Text] [Related]
3. Rapid Authentication and Detection of Olive Oil Adulteration Using Laser-Induced Breakdown Spectroscopy. Nanou E; Pliatsika N; Couris S Molecules; 2023 Dec; 28(24):. PubMed ID: 38138450 [TBL] [Abstract][Full Text] [Related]
4. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. Fragaki G; Spyros A; Siragakis G; Salivaras E; Dais P J Agric Food Chem; 2005 Apr; 53(8):2810-6. PubMed ID: 15826023 [TBL] [Abstract][Full Text] [Related]
5. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Manzoor S; Moncayo S; Navarro-Villoslada F; Ayala JA; Izquierdo-Hornillos R; de Villena FJ; Caceres JO Talanta; 2014 Apr; 121():65-70. PubMed ID: 24607111 [TBL] [Abstract][Full Text] [Related]
6. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany. Mignani AG; Ciaccheri L; Ottevaere H; Thienpont H; Conte L; Marega M; Cichelli A; Attilio C; Cimato A Anal Bioanal Chem; 2011 Jan; 399(3):1315-24. PubMed ID: 21107823 [TBL] [Abstract][Full Text] [Related]
7. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. López-Díez EC; Bianchi G; Goodacre R J Agric Food Chem; 2003 Oct; 51(21):6145-50. PubMed ID: 14518936 [TBL] [Abstract][Full Text] [Related]
8. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration. Vietina M; Agrimonti C; Marmiroli N Food Chem; 2013 Dec; 141(4):3820-6. PubMed ID: 23993554 [TBL] [Abstract][Full Text] [Related]
9. Laser-based classification of olive oils assisted by machine learning. Gazeli O; Bellou E; Stefas D; Couris S Food Chem; 2020 Jan; 302():125329. PubMed ID: 31404874 [TBL] [Abstract][Full Text] [Related]
10. Identifying and Quantifying Adulterants in Extra Virgin Olive Oil of the Picual Varietal by Absorption Spectroscopy and Nonlinear Modeling. Aroca-Santos R; Cancilla JC; Matute G; Torrecilla JS J Agric Food Chem; 2015 Jun; 63(23):5646-52. PubMed ID: 26028270 [TBL] [Abstract][Full Text] [Related]
11. Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS). Mbesse Kongbonga YG; Ghalila H; Onana MB; Ben Lakhdar Z Food Chem; 2014 Mar; 147():327-31. PubMed ID: 24206726 [TBL] [Abstract][Full Text] [Related]
12. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Agiomyrgianaki A; Petrakis PV; Dais P Talanta; 2010 Mar; 80(5):2165-71. PubMed ID: 20152467 [TBL] [Abstract][Full Text] [Related]
13. Laser induced breakdown spectroscopy for the discrimination of Candida strains. Manzoor S; Ugena L; Tornero-Lopéz J; Martín H; Molina M; Camacho JJ; Cáceres JO Talanta; 2016 Aug; 155():101-6. PubMed ID: 27216662 [TBL] [Abstract][Full Text] [Related]
14. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS. Tarazona JL; Guerrero J; Cabanzo R; Mejía-Ospino E Appl Opt; 2012 Mar; 51(7):B108-14. PubMed ID: 22410907 [TBL] [Abstract][Full Text] [Related]
15. Classification of Spanish extra virgin olive oils by data fusion of visible spectroscopic fingerprints and chemical descriptors. Pizarro C; Rodríguez-Tecedor S; Pérez-del-Notario N; Esteban-Díez I; González-Sáiz JM Food Chem; 2013 Jun; 138(2-3):915-22. PubMed ID: 23411196 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process. Wang ZZ; Deguchi Y; Kuwahara M; Yan JJ; Liu JP Appl Spectrosc; 2013 Nov; 67(11):1242-51. PubMed ID: 24160875 [TBL] [Abstract][Full Text] [Related]
17. Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Moncayo S; Manzoor S; Rosales JD; Anzano J; Caceres JO Food Chem; 2017 Oct; 232():322-328. PubMed ID: 28490081 [TBL] [Abstract][Full Text] [Related]
18. Determination of betaines in vegetable oils by capillary electrophoresis tandem mass spectrometry--application to the detection of olive oil adulteration with seed oils. Sánchez-Hernández L; Castro-Puyana M; Luisa Marina M; Crego AL Electrophoresis; 2011 Jun; 32(11):1394-401. PubMed ID: 21520150 [TBL] [Abstract][Full Text] [Related]
19. Virgin olive oil quality classification combining neural network and MOS sensors. García-González DL; Aparicio R J Agric Food Chem; 2003 Jun; 51(12):3515-9. PubMed ID: 12769516 [TBL] [Abstract][Full Text] [Related]
20. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS). Multari RA; Cremers DA; Scott T; Kendrick P J Agric Food Chem; 2013 Mar; 61(10):2348-57. PubMed ID: 23330961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]