These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 240678)

  • 41. Physicochemical evidence for the existence of two pyridoxal 5'-phosphate binding sites on glutamate dehydrogenase and characterization of their functional role.
    Talbot JC; Gros C; Cosson MP; Pantaloni D
    Biochim Biophys Acta; 1977 Sep; 494(1):19-32. PubMed ID: 20155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of glutamate dehydrogenase by L-leucine.
    Couée I; Tipton KF
    Biochim Biophys Acta; 1989 Mar; 995(1):97-101. PubMed ID: 2923920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Subunit dissociation and unfolding of bovine liver glutamate dehydrogenase induced by guanidine hydrochloride.
    Tashiro R; Inoue T; Shimozawa R
    Biochim Biophys Acta; 1982 Aug; 706(1):129-35. PubMed ID: 7126591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of bovine liver glutamate dehydrogenase by covalent reaction of adenosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)thiophosphate] with arginine-459 at an ADP regulatory site.
    Wrzeszczynski KO; Colman RF
    Biochemistry; 1994 Sep; 33(38):11544-53. PubMed ID: 7918368
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Equilibrium kinetic study of bovine liver glutamate dehydrogenase at high pH.
    Silverstein E
    Biochemistry; 1974 Aug; 13(18):3750-4. PubMed ID: 4368692
    [No Abstract]   [Full Text] [Related]  

  • 46. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation.
    Banerjee S; Schmidt T; Fang J; Stanley CA; Smith TJ
    Biochemistry; 2003 Apr; 42(12):3446-56. PubMed ID: 12653548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The sulphydryl groups of ox brain and liver glutamate dehydrogenase preparations and the effects of oxidation on their inhibitor sensitivities.
    Couée I; Tipton KF
    Neurochem Res; 1991 Jul; 16(7):773-80. PubMed ID: 1944766
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relationship between the conformation of glutamate dehydrogenase, the state of association of its subunit, and catalytic function.
    Strambini GB; Cioni P; Puntoni A
    Biochemistry; 1989 May; 28(9):3808-14. PubMed ID: 2751997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distance relationships between the catalytic site labeled with 4-(iodoacetamido)salicylic acid and regulatory sites of glutamate dehydrogenase.
    Jacobson MA; Colman RF
    Biochemistry; 1984 Aug; 23(17):3789-99. PubMed ID: 6487574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis.
    Labrou NE; Rigden DJ; Clonis YD
    Eur J Biochem; 2000 Nov; 267(22):6657-64. PubMed ID: 11054119
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Quaternary structure of L-glutamate dehydrogenase. I. Effects of pH, temperature and deuterium oxide (D20)].
    Chapelle S; Schoffeniels E
    Arch Int Physiol Biochim; 1972 Jan; 80(1):1-11. PubMed ID: 4111314
    [No Abstract]   [Full Text] [Related]  

  • 53. Distance between the substrate and regulatory reduced coenzyme binding sites of bovine liver glutamate dehydrogenase by resonance energy transfer.
    Lark RH; Colman RF
    Eur J Biochem; 1990 Mar; 188(2):377-83. PubMed ID: 2318212
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation.
    Smith TJ; Peterson PE; Schmidt T; Fang J; Stanley CA
    J Mol Biol; 2001 Mar; 307(2):707-20. PubMed ID: 11254391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonance energy transfer between the adenosine 5'-diphosphate site of glutamate dehydrogenase and a guanosine 5'-triphosphate site containing a tyrosine labeled with 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine.
    Jacobson MA; Colman RF
    Biochemistry; 1983 Aug; 22(18):4247-57. PubMed ID: 6414507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ox liver glutamate dehydrogenase. The use of chemical modification to study the relationship between catalytic sites for different amino acid substrates and the question of kinetic non-equivalence of the subunits.
    Syed SE; Engel PC
    Biochem J; 1984 Sep; 222(3):621-6. PubMed ID: 6148932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chymotrypsin-catalysed activation of bovine liver glutamate dehydrogenase.
    Place GA; Beynon RJ
    Biochem J; 1982 Jul; 205(1):75-80. PubMed ID: 7126185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The importance of arginine residues in the catalytic and regulatory functions of bovine-liver glutamate dehydrogenase.
    Pal PK; Colman RF
    Eur J Biochem; 1976 Sep; 68(2):437-43. PubMed ID: 185052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tryptic digestion of NADH dehydrogenase from alkalophilic Bacillus.
    Xu XM; Kanaya S; Koyama N; Sekiguchi T; Nosoh Y; Ohashi S; Tsuda K
    J Biochem; 1989 Apr; 105(4):626-32. PubMed ID: 2760020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affinity labeling of bovine liver glutamate dehydrogenase with 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-diphosphate and 5'-triphosphate.
    Ozturk DH; Safer D; Colman RF
    Biochemistry; 1990 Jul; 29(30):7112-8. PubMed ID: 2223765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.