BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24068037)

  • 1. Genotoxic and carcinogenic potential of engineered nanoparticles: an update.
    Kumar A; Dhawan A
    Arch Toxicol; 2013 Nov; 87(11):1883-1900. PubMed ID: 24068037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for detection of oxidative stress and genotoxicity of engineered nanoparticles.
    Kumar A; Sharma V; Dhawan A
    Methods Mol Biol; 2013; 1028():231-46. PubMed ID: 23740124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona.
    Senapati VA; Kansara K; Shanker R; Dhawan A; Kumar A
    Mutagenesis; 2017 Oct; 32(5):479-490. PubMed ID: 29048576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guidelines for the evaluation of chemicals for carcinogenicity. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment.
    Rep Health Soc Subj (Lond); 1991; 42():1-80. PubMed ID: 1763238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties.
    McGregor D
    Crit Rev Toxicol; 2007; 37(10):887-914. PubMed ID: 18027166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-quantitative risk ranking of potential human exposure to engineered nanoparticles (ENPs) in Europe.
    Li Y; Cummins E
    Sci Total Environ; 2021 Jul; 778():146232. PubMed ID: 33714827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methodological considerations for using umu assay to assess photo-genotoxicity of engineered nanoparticles.
    Cupi D; Baun A
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jan; 796():34-9. PubMed ID: 26778507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Health implications of engineered nanoparticles in infants and children.
    Tang S; Wang M; Germ KE; Du HM; Sun WJ; Gao WM; Mayer GD
    World J Pediatr; 2015 Aug; 11(3):197-206. PubMed ID: 26253410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity.
    Magaye R; Zhao J
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):644-50. PubMed ID: 23000472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro.
    Vevers WF; Jha AN
    Ecotoxicology; 2008 Jul; 17(5):410-20. PubMed ID: 18491228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines
    Llewellyn SV; Parak WJ; Hühn J; Burgum MJ; Evans SJ; Chapman KE; Jenkins GJS; Doak SH; Clift MJD
    Nanotoxicology; 2022 Feb; 16(1):52-72. PubMed ID: 35085458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.
    Kansara K; Patel P; Shah D; Shukla RK; Singh S; Kumar A; Dhawan A
    Environ Mol Mutagen; 2015 Mar; 56(2):204-17. PubMed ID: 25524809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective.
    Bolt HM; Foth H; Hengstler JG; Degen GH
    Toxicol Lett; 2004 Jun; 151(1):29-41. PubMed ID: 15177638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotoxicity of environmental agents assessed by the alkaline comet assay.
    Møller P
    Basic Clin Pharmacol Toxicol; 2005; 96 Suppl 1():1-42. PubMed ID: 15859009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Free Radic Biol Med; 2011 Nov; 51(10):1872-81. PubMed ID: 21920432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.