These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24068156)
41. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2 P2 macrocyclic iron(II) complexes. Bigler R; Huber R; Mezzetti A Angew Chem Int Ed Engl; 2015 Apr; 54(17):5171-4. PubMed ID: 25845557 [TBL] [Abstract][Full Text] [Related]
42. A modular design of ruthenium catalysts with diamine and BINOL-derived phosphinite ligands that are enantiomerically-matched for the effective asymmetric transfer hydrogenation of simple ketones. Guo R; Elpelt C; Chen X; Song D; Morris RH Chem Commun (Camb); 2005 Jun; (24):3050-2. PubMed ID: 15959581 [TBL] [Abstract][Full Text] [Related]
43. Chiral N-heterocyclic carbene/pyridine ligands for the iridium-catalyzed asymmetric hydrogenation of olefins. Schumacher A; Bernasconi M; Pfaltz A Angew Chem Int Ed Engl; 2013 Jul; 52(29):7422-5. PubMed ID: 23765942 [TBL] [Abstract][Full Text] [Related]
44. Highly efficient and enantioselective hydrogenation of quinolines and pyridines with Ir-Difluorphos catalyst. Tang W; Sun Y; Lijin Xu ; Wang T; Qinghua Fan ; Lam KH; Chan AS Org Biomol Chem; 2010 Aug; 8(15):3464-71. PubMed ID: 20532262 [TBL] [Abstract][Full Text] [Related]
45. Highly efficient iridium catalyst for asymmetric transfer hydrogenation of aromatic ketones under base-free conditions. Dong ZR; Li YY; Chen JS; Li BZ; Xing Y; Gao JX Org Lett; 2005 Mar; 7(6):1043-5. PubMed ID: 15760134 [TBL] [Abstract][Full Text] [Related]
46. Chiral-at-metal iridium complex for efficient enantioselective transfer hydrogenation of ketones. Tian C; Gong L; Meggers E Chem Commun (Camb); 2016 Mar; 52(22):4207-10. PubMed ID: 26911401 [TBL] [Abstract][Full Text] [Related]
47. Employing the structural diversity of nature: development of modular dipeptide-analogue ligands for ruthenium-catalyzed enantioselective transfer hydrogenation of ketones. Pastor IM; Västilä P; Adolfsson H Chemistry; 2003 Sep; 9(17):4031-45. PubMed ID: 12953189 [TBL] [Abstract][Full Text] [Related]
48. Highly efficient and highly enantioselective asymmetric hydrogenation of ketones with TunesPhos/1,2-diamine-ruthenium(II) complexes. Li W; Sun X; Zhou L; Hou G; Yu S; Zhang X J Org Chem; 2009 Feb; 74(3):1397-9. PubMed ID: 19117476 [TBL] [Abstract][Full Text] [Related]
49. Achiral benzophenone ligand-rhodium complex with chiral diamine activator for high enantiocontrol in asymmetric transfer hydrogenation. Mikami K; Wakabayashi K; Yusa Y; Aikawa K Chem Commun (Camb); 2006 Jun; (22):2365-7. PubMed ID: 16733581 [TBL] [Abstract][Full Text] [Related]
50. The effects of ligand variation on enantioselective hydrogenation catalysed by RuH2(diphosphine)(diamine) complexes. Chen HY; Di Tommaso D; Hogarth G; Catlow CR Dalton Trans; 2012 Feb; 41(6):1867-77. PubMed ID: 22166917 [TBL] [Abstract][Full Text] [Related]
51. Synthesis and application of chiral N-heterocyclic carbene-oxazoline ligands: iridium-catalyzed enantioselective hydrogenation. Nanchen S; Pfaltz A Chemistry; 2006 Jun; 12(17):4550-8. PubMed ID: 16557626 [TBL] [Abstract][Full Text] [Related]
52. Highly active iridium(I) complexes for the selective hydrogenation of carbon-carbon multiple bonds. Bennie LS; Fraser CJ; Irvine S; Kerr WJ; Andersson S; Nilsson GN Chem Commun (Camb); 2011 Nov; 47(42):11653-5. PubMed ID: 21956242 [TBL] [Abstract][Full Text] [Related]
53. Chiral and nonchiral [OsX2(diphosphane)(diamine)] (X: Cl, OCH2CF3) complexes for fast hydrogenation of carbonyl compounds. Baratta W; Barbato C; Magnolia S; Siega K; Rigo P Chemistry; 2010 Mar; 16(10):3201-6. PubMed ID: 20112312 [TBL] [Abstract][Full Text] [Related]
54. SimplePHOX, a readily available chiral ligand system for iridium-catalyzed asymmetric hydrogenation. Smidt SP; Menges F; Pfaltz A Org Lett; 2004 Jun; 6(12):2023-6. PubMed ID: 15176809 [TBL] [Abstract][Full Text] [Related]
55. N-benzyl substituted N-heterocyclic carbene complexes of iridium(I): assessment in transfer hydrogenation catalyst. Gülcemal S; Gökçe AG; Cetinkaya B Inorg Chem; 2013 Sep; 52(18):10601-9. PubMed ID: 24004417 [TBL] [Abstract][Full Text] [Related]
56. Rhodium phosphine-phosphite catalysts in the hydrogenation of challenging N-(3,4-dihydronaphthalen-2-yl) amide derivatives. Arribas I; Rubio M; Kleman P; Pizzano A J Org Chem; 2013 Apr; 78(8):3997-4005. PubMed ID: 23485121 [TBL] [Abstract][Full Text] [Related]
57. Iridium phosphite-oxazoline catalysts for the highly enantioselective hydrogenation of terminal alkenes. Mazuela J; Verendel JJ; Coll M; Schäffner B; Börner A; Andersson PG; Pàmies O; Diéguez M J Am Chem Soc; 2009 Sep; 131(34):12344-53. PubMed ID: 19658416 [TBL] [Abstract][Full Text] [Related]
58. A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Wang Y; Yang G; Xie F; Zhang W Org Lett; 2018 Oct; 20(19):6135-6139. PubMed ID: 30226059 [TBL] [Abstract][Full Text] [Related]
59. Carbohydrate-based pseudo-dipeptides: new ligands for the highly enantioselective Ru-catalyzed transfer hydrogenation reaction. Coll M; Pàmies O; Adolfsson H; Diéguez M Chem Commun (Camb); 2011 Nov; 47(44):12188-90. PubMed ID: 21959627 [TBL] [Abstract][Full Text] [Related]
60. Highly Enantioselective Synthesis of Indolines: Asymmetric Hydrogenation at Ambient Temperature and Pressure with Cationic Ruthenium Diamine Catalysts. Yang Z; Chen F; He Y; Yang N; Fan QH Angew Chem Int Ed Engl; 2016 Oct; 55(44):13863-13866. PubMed ID: 27689778 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]