These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24068197)

  • 1. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.
    Mainz R; Walker BC; Schmidt SS; Zander O; Weber A; Rodriguez-Alvarez H; Just J; Klaus M; Agrawal R; Unold T
    Phys Chem Chem Phys; 2013 Nov; 15(41):18281-9. PubMed ID: 24068197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW
    Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; Sun G; He Q; Zhou Z; Sun Y; Chang LB
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu
    Lai FI; Yang JF; Chen WC; Kuo SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40224-40234. PubMed ID: 29072439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.
    Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K
    ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.
    Buffière M; Brammertz G; Sahayaraj S; Batuk M; Khelifi S; Mangin D; El Mel AA; Arzel L; Hadermann J; Meuris M; Poortmans J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14690-8. PubMed ID: 26039042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into the Selenization Mechanisms of Wurtzite CZTS Nanorods.
    Bree G; Coughlan C; Geaney H; Ryan KM
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7117-7125. PubMed ID: 29392941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuInSe2 (CIS) thin films prepared from amorphous Cu-In-Se nanoparticle precursors for solar cell application.
    Ahn S; Kim K; Cho A; Gwak J; Yun JH; Shin K; Ahn S; Yoon K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1530-6. PubMed ID: 22391391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency.
    Cai Y; Ho JC; Batabyal SK; Liu W; Sun Y; Mhaisalkar SG; Wong LH
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1533-7. PubMed ID: 23428066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.
    Jeon JO; Lee KD; Seul Oh L; Seo SW; Lee DK; Kim H; Jeong JH; Ko MJ; Kim B; Son HJ; Kim JY
    ChemSusChem; 2014 Apr; 7(4):1073-7. PubMed ID: 24692285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source.
    Zhao W; Wang G; Tian Q; Yang Y; Huang L; Pan D
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12650-5. PubMed ID: 25000474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device.
    Hsu WC; Zhou H; Luo S; Song TB; Hsieh YT; Duan HS; Ye S; Yang W; Hsu CJ; Jiang C; Bob B; Yang Y
    ACS Nano; 2014 Sep; 8(9):9164-72. PubMed ID: 25106060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microenvironment Created by SnSe
    Guo J; Mao Y; Ao J; Han Y; Cao C; Liu F; Bi J; Wang S; Zhang Y
    Small; 2022 Nov; 18(47):e2203354. PubMed ID: 36180408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-step sulfo-selenization method to synthesize Cu2ZnSn(S(y)Se(1-y))4 absorbers from metallic stack precursors.
    Fairbrother A; Fontané X; Izquierdo-Roca V; Espindola-Rodriguez M; López-Marino S; Placidi M; López-García J; Pérez-Rodríguez A; Saucedo E
    Chemphyschem; 2013 Jun; 14(9):1836-43. PubMed ID: 23576489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.
    Jin C; Ramasamy P; Kim J
    Dalton Trans; 2014 Jul; 43(25):9481-5. PubMed ID: 24823944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells.
    Steichen M; Thomassey M; Siebentritt S; Dale PJ
    Phys Chem Chem Phys; 2011 Mar; 13(10):4292-302. PubMed ID: 21249244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.