These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 24068285)
1. The effectiveness and risk comparison of EDTA with EGTA in enhancing Cd phytoextraction by Mirabilis jalapa L. Wang S; Liu J Environ Monit Assess; 2014 Feb; 186(2):751-9. PubMed ID: 24068285 [TBL] [Abstract][Full Text] [Related]
2. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Sharma P; Rathee S; Ahmad M; Raina R; Batish DR; Singh HP Int J Phytoremediation; 2023; 25(9):1106-1115. PubMed ID: 36264021 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of alkaline soils co-contaminated with cadmium and tetracycline antibiotics using the ornamental hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. Li X; Zhu W; Meng G; Guo R; Wang Y Environ Sci Pollut Res Int; 2020 Apr; 27(12):14175-14183. PubMed ID: 32037495 [TBL] [Abstract][Full Text] [Related]
4. Re-investigation of cadmium accumulation in Mirabilis jalapa L.: evidences from field and laboratory. Li Q; Wang H; Wang H; Wang Z; Li Y; Ran J; Zhang C Environ Sci Pollut Res Int; 2020 Apr; 27(11):12065-12079. PubMed ID: 31983000 [TBL] [Abstract][Full Text] [Related]
5. Ornamental hyperaccumulator Mirabilis jalapa L. phytoremediating combine contaminated soil enhanced by some chelators and surfactants. Wei S; Xu L; Dai H; Hu Y Environ Sci Pollut Res Int; 2018 Oct; 25(29):29699-29704. PubMed ID: 30144014 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Phytoextraction of Lead from Artificially Contaminated Soil by Mirabilis jalapa with Chelating Agents. Yan L; Li C; Zhang J; Moodley O; Liu S; Lan C; Gao Q; Zhang W Bull Environ Contam Toxicol; 2017 Aug; 99(2):208-212. PubMed ID: 28646396 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of cadmium contaminated alkaline soil using the ornamental hyperaccumulator Mirabilis jalapa L. enhanced by double harvesting: a field study. Li X; Chang Z; Lian X; Meng G; Ma J; Guo R; Wang Y Environ Sci Pollut Res Int; 2022 May; 29(22):33506-33513. PubMed ID: 35029826 [TBL] [Abstract][Full Text] [Related]
8. Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. He X; Zhang J; Ren Y; Sun C; Deng X; Qian M; Hu Z; Li R; Chen Y; Shen Z; Xia Y Chemosphere; 2019 Dec; 237():124483. PubMed ID: 31404738 [TBL] [Abstract][Full Text] [Related]
9. [Competence of Cd Phytoremediation in Cd-OCDF Co-contaminated Soil Using Mirabilis jalapa L]. Zhang XL; Zou W; Zhou QX Huan Jing Ke Xue; 2015 Aug; 36(8):3045-55. PubMed ID: 26592039 [TBL] [Abstract][Full Text] [Related]
10. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Wu QT; Deng JC; Long XX; Morel JL; Schwartz C J Environ Sci (China); 2006; 18(6):1113-8. PubMed ID: 17294951 [TBL] [Abstract][Full Text] [Related]
11. GLDA and EDTA assisted phytoremediation potential of Guan H; Dong L; Zhang Y; Bai S; Yan L Int J Phytoremediation; 2022; 24(13):1395-1404. PubMed ID: 35166632 [TBL] [Abstract][Full Text] [Related]
12. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Zhao S; Shang X; Duo L Environ Sci Pollut Res Int; 2013 Feb; 20(2):967-75. PubMed ID: 22661279 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. Sharma P; Rathee S; Ahmad M; Batish DR; Singh HP; Kohli RK Environ Sci Pollut Res Int; 2022 Aug; 29(38):57102-57111. PubMed ID: 35344144 [TBL] [Abstract][Full Text] [Related]
14. Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer. Zhang P; Zhao D; Liu Y; Zhang Y; Wei X; Xu B; Bocharnikova E; Matichenkov V Environ Sci Pollut Res Int; 2019 Aug; 26(23):23638-23644. PubMed ID: 31203547 [TBL] [Abstract][Full Text] [Related]
15. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Guo D; Ali A; Ren C; Du J; Li R; Lahori AH; Xiao R; Zhang Z; Zhang Z Ecotoxicol Environ Saf; 2019 Jan; 167():396-403. PubMed ID: 30366273 [TBL] [Abstract][Full Text] [Related]
16. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994 [TBL] [Abstract][Full Text] [Related]
17. Cadmium uptake and transfer by Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471 [No Abstract] [Full Text] [Related]
18. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
19. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants. Eissa MA Environ Sci Pollut Res Int; 2016 May; 23(10):10247-54. PubMed ID: 26884237 [TBL] [Abstract][Full Text] [Related]
20. Tolerance, uptake and removal of nitrobenzene by a newly-found remediation species Mirabilis jalapa L. Zhou Q; Diao C; Sun Y; Zhou J Chemosphere; 2012 Mar; 86(10):994-1000. PubMed ID: 22236591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]